# 10<sup>th</sup> International Conference on Quarks and Nuclear Physics (QNP 2024)

July 11, 2024

# τ data-driven evaluation of Euclidean windows for the hadronic vacuum polarization

Phys.Lett.B 850 (2024) 138492

Alejandro Miranda IFAE, Spain In collaboration with:

Pere Masjuan (IFAE, UAB, Spain)

Pablo Roig (Cinvestav, IPN, Mexico)



Barcelona Institute of Science and Technology



Generalitat de Catalunya Departament de Recerca i Universitats

# The Anomalous Magnetic Moment of the Muon

#### WP20 - Phys. Rept. 887 (2020) 1-166



C. Lehner. CERN EP seminar, 8 April 2021

G. Venanzoni. CERN seminar, 8 April 2021

# The Anomalous Magnetic Moment of the Muon

#### WP20 - Phys. Rept. 887 (2020) 1-166



C. Lehner. CERN EP seminar, 8 April 2021

2nd WP by the end of 2024

G. Venanzoni. CERN seminar, 8 April 2021

# The Anomalous Magnetic Moment of the Muon

#### WP20 - Phys. Rept. 887 (2020) 1-166



- At low energies QCD gets strongly interacting and a perturbative calculation is not feasible.
- Luckily, analyticity and unitarity allow us to express the leading hadronic vacuum polarization (HVP) contributions via a dispersion relation in terms of experimental data:

$$a_{\mu}^{ extsf{HVP,LO}} = rac{lpha^2}{3\pi^2} \int_{m_{\pi}^2}^{\infty} ds rac{K(s)}{s} R(s),$$

Gourdin, De Rafael. Nucl.Phys.B 10 (1969) 667-674

where *K(s)* is a Kernel function  $\longrightarrow K(s) \sim 1/s$ ,

$$R(s) = rac{\sigma^0(e^+e^- 
ightarrow ext{hadrons}(+\gamma))}{\sigma_{pt}}, \quad \sigma_{pt} = rac{4\pi lpha^2}{3s}$$

• An evaluation of the HVP, LO contribution can be obtained from the measurements of  $\sigma(e^+e^- \rightarrow hadrons)$  or the  $\tau \rightarrow \nu_{\tau} + hadron$  decays which can be related to the isovector component of the  $e^+e^- \rightarrow hadrons$  cross section through isospin-symmetry.

- At low energies QCD gets strongly interacting and a perturbative calculation is not feasible.
- Luckily, analyticity and unitarity allow us to express the leading hadronic vacuum polarization (HVP) contributions via a dispersion relation in terms of experimental data:

$$a_{\mu}^{ extsf{HVP,LO}} = rac{lpha^2}{3\pi^2} \int_{m_{\pi}^2}^{\infty} ds rac{ extsf{K}(s)}{s} extsf{R}(s),$$

Gourdin, De Rafael. Nucl.Phys.B 10 (1969) 667-674

where *K(s)* is a Kernel function  $\longrightarrow K(s) \sim 1/s$ ,

$$R(s) = rac{\sigma^0(e^+e^- 
ightarrow ext{hadrons}(+\gamma))}{\sigma_{pt}}, \quad \sigma_{pt} = rac{4\pi lpha^2}{3s}$$

- An evaluation of the HVP, LO contribution can be obtained from the measurements
  of σ(e<sup>+</sup>e<sup>-</sup>→hadrons) or the τ → ν<sub>τ</sub> + hadron decays which can be related to the isovector component
  of the e<sup>+</sup>e<sup>-</sup>→hadrons cross section through isospin-symmetry.
- Since both are subject to **theoretical uncertainties**, it is a good strategy to keep using both.

- About 73% of the contributions to the HVP and 58% of the total uncertainty correspond to the  $\pi^+\pi^-$ ( $\gamma$ ) final state at low energies ( $4m_{\pi}^2 \le s \le 0.8 \,\text{GeV}^2$ ).
- For the two-pion final state,

$$\sigma_{\pi^+\pi^-}(s) = rac{\pi lpha^2 eta_{\pi^-\pi^+}^3(s)}{3s} |F_V(s)|^2 \,,$$



F. Jegerlehner. Springer Tracts Mod. Phys. 274 (2017)

- About 73% of the contributions to the HVP and 58% of the total uncertainty correspond to the  $\pi^+\pi^-$ ٠ ( $\gamma$ ) final state at low energies ( $4m_{\pi}^2 \leq s \leq 0.8 \, \text{GeV}^2$ ).  $\bar{u}, d$
- For the two-pion final state, ٠

$$\sigma_{\pi^+\pi^-}(s) = rac{\pi lpha^2 eta_{\pi^-\pi^+}^3(s)}{3s} \left|F_V(s)\right|^2,$$

Including isospin-breaking corrections at LO, we have ٠

 $\sigma_{\pi^+\pi^-}(s) =$ 

**Kinematics** 



- About 73% of the contributions to the HVP and 58% of the total uncertainty correspond to the  $\pi^+\pi^-$ ( $\gamma$ ) final state at low energies ( $4m_{\pi}^2 \le s \le 0.8 \,\text{GeV}^2$ ).
- For the two-pion final state,

$$\sigma_{\pi^+\pi^-}(s) = rac{\pi lpha^2 eta_{\pi^-\pi^+}^3(s)}{3s} \, |F_V(s)|^2 \, ,$$

• Including isospin-breaking corrections at LO, we have

$$\sigma_{\pi^+\pi^-}(s) = \left[rac{K_{\sigma}(s)}{K_{\Gamma}(s)}rac{d\Gamma_{\pi\pi[\gamma]}}{ds}
ight] rac{R_{IB}(s)}{S_{EW}},$$

where 
$$R_{IB}(s) = \frac{FSR(s)}{G_{EM}(s)} \frac{\beta_{\pi^+\pi^-}^3}{\beta_{\pi^0\pi^-}^3} \left| \frac{F_V(s)}{f_+(s)} \right|^2$$
,



F. Jegerlehner. Springer Tracts Mod. Phys. 274 (2017)

- The ratio of neutral to charged current di-pion form factor and the long-distance em RadCor are challenging.
- **G**<sub>EM</sub>(s) receives contributions from real and virtual photons.

Cirigliano et al. Phy. Lett. B513 (2001). JHEP 08 (2002) 002

• There is a **discrepancy** between the values of  $a_{\mu}^{HVP,LO}[\pi\pi]$  obtained through  $e^+e^-$  and  $\tau$  decays. According to Cirigliano et al. this could be a NP effect,

$$\frac{a_{\mu}^{\tau} - a_{\mu}^{ee}}{2 a_{\mu}^{ee}} = \epsilon_{L}^{d\tau} - \epsilon_{L}^{de} + \epsilon_{R}^{d\tau} - \epsilon_{R}^{de} + c_{T} \hat{\epsilon}_{T}^{d\tau}$$
Phy. Rev. Lett. 122 (2019)  
JHEP 04 (2022) 152

- There is a solution given by Jegerlehner and Szafron that induces an additional correction due to the  $\rho \gamma$  mixing where  $\rho^0$  is regarded as a gauge boson. Eur. Phys. J. C 71 (2011) 1632
- NP effects in  $\tau^- \rightarrow \pi^- \pi^0 v_{\tau}$  decays were studied using an EFT framework for some observables.

JHEP 11 (2018) 038

 A global fit using hadronic tau decays to set bounds on NP effective couplings at the low-energy limit of SMEFT was performed by Gonzàlez-Solís et al.

Phys. Lett. B 804 (2020) 135371

There is a discrepancy between the values of a<sup>HVP,LO</sup><sub>μ</sub>[ππ] obtained through e<sup>+</sup>e<sup>-</sup> and τ decays. According to Cirigliano et al. this could be a NP effect,

$$\frac{a_{\mu}^{\tau} - a_{\mu}^{ee}}{2 a_{\mu}^{ee}} = \epsilon_{L}^{d\tau} - \epsilon_{L}^{de} + \epsilon_{R}^{d\tau} - \epsilon_{R}^{de} + c_{T} \hat{\epsilon}_{T}^{d\tau}$$
Phy. Rev. Lett. 122 (2019)  
JHEP 04 (2022) 152

- There is a solution given by Jegerlehner and Szafron that induces an additional correction due to the  $\rho \gamma$  mixing where  $\rho^0$  is regarded as a gauge boson. Eur. Phys. J. C 71 (2011) 1632
- NP effects in  $\tau^- \rightarrow \pi^- \pi^0 v_{\tau}$  decays were studied using an EFT framework for some observables.

```
JHEP 11 (2018) 038
```

- A global fit using hadronic tau decays to set bounds on NP effective couplings at the low-energy limit of SMEFT was performed by Gonzàlez-Solís et al.
- There is one lattice calculation by the BMWc with an error of ±53x10<sup>-11</sup> in which the difference concerning the experimental value is reduced to ~1.7σ.

Nature 593 (2021) 7857, 51-55

There is a discrepancy between the values of a<sup>HVP,LO</sup><sub>μ</sub>[ππ] obtained through e<sup>+</sup>e<sup>-</sup> and τ decays. According to Cirigliano et al. this could be a NP effect,

$$\frac{a_{\mu}^{\tau} - a_{\mu}^{ee}}{2 a_{\mu}^{ee}} = \epsilon_{L}^{d\tau} - \epsilon_{L}^{de} + \epsilon_{R}^{d\tau} - \epsilon_{R}^{de} + c_{T} \hat{\epsilon}_{T}^{d\tau}$$
Phy. Rev. Lett. 122 (2019)  
JHEP 04 (2022) 152

- There is a solution given by Jegerlehner and Szafron that induces an additional correction due to the  $\rho \gamma$  mixing where  $\rho^0$  is regarded as a gauge boson. Eur. Phys. J. C 71 (2011) 1632
- NP effects in  $\tau^- \rightarrow \pi^- \pi^0 v_{\tau}$  decays were studied using an EFT framework for some observables.

```
JHEP 11 (2018) 038
```

- A global fit using hadronic tau decays to set bounds on NP effective couplings at the low-energy limit of SMEFT was performed by Gonzàlez-Solís et al.
- There is one lattice calculation by the BMWc with an error of ±53x10<sup>-11</sup> in which the difference concerning the experimental value is reduced to ~1.7σ.

```
Nature 593 (2021) 7857, 51-55
```

 The recent measurement of the e<sup>+</sup>e<sup>-</sup> cross section by CMD-3 is in conflict with all previous determinations.

Phys.Rev.D 109 (2024) 11, 112002

#### Long-distance radiative corrections

- **G**<sub>EM</sub> was originally studied by Cirigliano et al in the frame of **RChT** at **O**(**p**<sup>4</sup>).
- A recalculation was performed by Flores-Baez et al using a VMD model.
- The two model predictions disagree due to the presence of diagrams involving the  $\rho\omega\pi$  vertex.
- We extend the **RChT** estimation including contributions up to **O(p<sup>6</sup>)**.





JHEP 08 (2002) 002

Phys.Rev.D 74 (2006) 071301

Phys. Rev. D 102 (2020) 114017

Nucl. Phys. B Proc. Suppl. 169 (2007) 250-254

## **Data-driven calculations of HVP**



| $\sigma_{\pi^+\pi^-}(s) =$ | $\left[rac{K_{\sigma}(s)}{K_{\Gamma}(s)} ight]$ | $\frac{d\Gamma_{\pi\pi[\gamma]}}{ds}$                                                           | <u>]</u>          | $\frac{R_{IB}(s)}{S_{EW}},$ |
|----------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------|-----------------------------|
| $R_{IB}(s) =$              | $rac{FSR(s)}{G_{EM}(s)} rac{eta}{eta}$         | $ \left  \begin{array}{c} 3 \\ \frac{\pi^{+}\pi^{-}}{3} \\ \pi^{0}\pi^{-} \end{array} \right  $ | $\frac{F_V}{f_+}$ | $\frac{(s)}{(s)}\Big ^2$ ,  |

| $\Delta \epsilon$ | $a_{\mu}^{\mathrm{HVP,LO}}[\pi\pi,\tau](\times 10^{10})$      |
|-------------------|---------------------------------------------------------------|
| Source            | $\mathcal{O}(p^4)$ $\mathcal{O}(p^6)$                         |
| $S_{\rm EW}$      | -11.96(15)                                                    |
| PS                | -7.47(0)                                                      |
| FSR               | +4.56(46)                                                     |
| $G_{\rm EM}$      | $-1.71 \binom{0.61}{1.48} -7.61 \binom{6.50}{4.56}$           |
| $\mathbf{FF}$     | $+7.13(1.48)({1.59\atop 1.54})({85\atop 80})$                 |
| Total             | $-9.45(\substack{2.51\\2.83})  -15.35(\substack{6.98\\5.17})$ |

#### SEW: Sirlin '78; Marciano-Sirlin '93

FF (Mixing,...): Maltman '05; Maltman-Yorke '06, '11; Davier et al '09 EM: Cirigliano et al '01, '02; Flores-Tlalpa et al '06; Miranda and Roig '20; Esparza-Arellano et '23

# **Data-driven calculations of HVP**



$$\sigma_{\pi^+\pi^-}(s) = \left[rac{K_\sigma(s)}{K_\Gamma(s)}rac{d\Gamma_{\pi\pi[\gamma]}}{ds}
ight] rac{R_{IB}(s)}{S_{EW}} R_{IB}(s) = rac{FSR(s)}{G_{EM}(s)}rac{eta_{\pi^+\pi^-}}{eta_{\pi^0\pi^-}^3} \left|rac{F_V(s)}{f_+(s)}
ight|^2,$$

| $\Delta \epsilon$ | $\Delta a_{\mu}^{\mathrm{HVP,LO}}[\pi\pi,\tau](	imes 10^{10})$ |  |  |  |  |  |
|-------------------|----------------------------------------------------------------|--|--|--|--|--|
| Source            | $\mathcal{O}(p^4)$ $\mathcal{O}(p^6)$                          |  |  |  |  |  |
| $S_{\rm EW}$      | -11.96(15)                                                     |  |  |  |  |  |
| PS                | -7.47(0)                                                       |  |  |  |  |  |
| FSR               | +4.56(46)                                                      |  |  |  |  |  |
| $G_{\rm EM}$      | $-1.71 \binom{0.61}{1.48} -7.61 \binom{6.50}{4.56}$            |  |  |  |  |  |
| FF                | $+7.13(1.48)({1.59\atop 1.54})({85\atop 80})$                  |  |  |  |  |  |
| Total             | $-9.45(\substack{2.51\\2.83})  -15.35(\substack{6.98\\5.17})$  |  |  |  |  |  |

#### SEW: Sirlin '78; Marciano-Sirlin '93

FF (Mixing,...): Maltman '05; Maltman-Yorke '06, '11; Davier et al '09 EM: Cirigliano et al '01, '02; Flores-Tlalpa et al '06; Miranda and Roig '20; Esparza-Arellano et '23

### HVP, LO from data

• Comparison of results for the HVP, LO, evaluated between 0.6 GeV and 0.88 GeV.



| Experiment  | $a_\mu^{\pi^+\pi^-,\mathrm{LO}}\cdot 10^{10}$ |
|-------------|-----------------------------------------------|
| before CMD2 | $368.8 \pm 10.3$                              |
| CMD2        | $366.5\pm3.4$                                 |
| SND         | $364.7\pm4.9$                                 |
| KLOE        | $360.6\pm2.1$                                 |
| BABAR       | $370.1\pm2.7$                                 |
| BES         | $361.8\pm3.6$                                 |
| CLEO        | $370.0\pm6.2$                                 |
| SND2k       | $366.7\pm3.2$                                 |
| CMD3        | $379.3\pm3.0$                                 |

CMD-3. Phys.Rev.D 109 (2024) 11, 112002

### HVP, LO from data

• Comparison of results for the HVP, LO, evaluated between 0.6 GeV and 0.88 GeV.



| Experiment  | $a_\mu^{\pi^+\pi^-,\mathrm{LO}}\cdot 10^{10}$ |             |
|-------------|-----------------------------------------------|-------------|
| before CMD2 | $368.8 \pm 10.3$                              |             |
| CMD2        | $366.5\pm3.4$                                 |             |
| SND         | $364.7 \pm 4.9$                               |             |
| KLOE        | $360.6\pm2.1$                                 |             |
| BABAR       | $370.1\pm2.7$                                 | ► e⁺e⁻ data |
| BES         | $361.8\pm3.6$                                 |             |
| CLEO        | $370.0\pm6.2$                                 |             |
| SND2k       | $366.7\pm3.2$                                 |             |
| CMD3        | $379.3\pm3.0$                                 |             |
| ALEPH       | $373.7\pm4.0$                                 |             |
| Belle       | $375.6\pm6.3$                                 | ملامام      |
| CLEO        | $376.0\pm7.1$                                 | τ άατα      |
| OPAL        | $366.1\pm7.6$                                 |             |

#### CMD-3. Phys.Rev.D 109 (2024) 11, 112002



• Large tensions among experiments: KLOE, BaBar and CMD3.

Comparison between the different data sets: KLOE and BaBar (left-hand) and CMD-3 (right-hand).

P. Masjuan. Phys.Lett.B 850 (2024) 138492

# **Euclidean windows**

 Euclidean window quantities allow for the separation of the most challenging short and long time-distance contributions: internal lattice cross-check.

 $a_{\mu} = 4\alpha^{2} \sum_{t} w_{t} \Big[ \Theta_{\rm SD}(t) + \Theta_{\rm W}(t) + \Theta_{\rm LD}(t) \Big] G(t) \qquad \text{RBC/UKQCD 2018}$ 

• A **dispersive** result for the total **intermediate** window contribution,

 $a^{\rm W}_{\mu} = 229.4(1.4) \times 10^{-10}$  which is in <code>4.3o</code> tension with recent lattice results.

Phys.Lett.B 833 (2022) 137313

 The discrepancy between data-driven and LQCD is almost entirely due to the light-quark connected contribution, which is dominated by the 2π channel ~81%.



Alejandro Miranda (IFAE)

### **Isospin-breaking corrections**

• We can **estimate** the effect of each **IB correction** through

$$\Delta a_{\mu}^{\mathrm{HVP, \ LO}}[\pi\pi, \tau] = \frac{1}{4\pi^3} \int_{4m_{\pi}^2}^{m_{\tau}^2} ds \, K(s) \left[ \frac{K_{\sigma}(s)}{K_{\Gamma}(s)} \frac{d\Gamma_{\pi\pi[\gamma]}}{ds} \right] \left( \frac{R_{\mathrm{IB}}(s)}{S_{\mathrm{EW}}} - 1 \right),$$

Contributions to  $\Delta a_{\mu}^{\text{HVP, LO}}$  in units of 10<sup>-11</sup> using the **dispersive** representation of the form factor.

| $\Delta a_{\mu}^{ m HVP,LO}$ |                    |                      |                                         |                         |                                             |                                |                                               |                                    |       |
|------------------------------|--------------------|----------------------|-----------------------------------------|-------------------------|---------------------------------------------|--------------------------------|-----------------------------------------------|------------------------------------|-------|
|                              | S                  | D                    | int                                     |                         | LD                                          |                                | Total                                         |                                    |       |
|                              | $\mathcal{O}(p^4)$ | $\mathcal{O}(p^6)$   | $\mathcal{O}(p^4)$                      | $\mathcal{O}(p^6)$      | $\mathcal{O}(p^4)$                          | $\mathcal{O}(p^6)$             | $\mathcal{O}(p^4)$                            | $\mathcal{O}(p^6)$                 |       |
| $S_{ m EW}$                  | -0.3               | -0.31(0) $-2.96(0)$  |                                         | -7.04(0)                |                                             | -10.31(0)                      |                                               |                                    |       |
| $\mathbf{PS}$                | -0.1               | 3(0)                 | -1.39(0)                                |                         | -5.93(0)                                    |                                | -7.45(0)                                      |                                    |       |
| $\mathbf{FSR}$               | +0.1               | (3(1))               | +1.23(12)                               |                         | +1.23(12) $+3.19(32)$                       |                                | 9(32)                                         | +4.5                               | 5(45) |
| $G_{\mathrm{EM}}$            | $+0.06(^{0}_{2})$  | $-0.03(^{9}_{7})$    | $+0.29(^{6}_{19})$                      | $-0.58(^{93}_{71})$     | $-2.05(\substack{0.55\\1.27})$              | $-6.98(\substack{5.48\\3.78})$ | $-1.70(\substack{0.61\\1.48})$                | $-7.59(\substack{6.50\\4.56})$     |       |
| $\mathbf{FF}$                | +0.16(             | $(5)(1)\binom{2}{1}$ | $+1.90(49)\binom{29}{27}\binom{21}{20}$ |                         | $+5.04(94)({}^{1.29}_{1.26})({}^{62}_{59})$ |                                | $+7.10(1.48)({}^{1.59}_{1.54})({}^{85}_{80})$ |                                    |       |
| Total                        | -0.09(6)           | $-0.18(^{11}_{9})$   | $-0.93(^{62}_{64})$                     | $-1.80(^{1.12}_{0.93})$ | $-6.79({}^{1.83}_{2.13})$                   | $-11.72({}^{5.75}_{4.15})$     | $-7.81({}^{2.51}_{2.83})$                     | $-13.70(\stackrel{6.98}{_{5.17}})$ |       |

In agreement with: Phys. Rev. D 102 (2020) 114017

### Windows quantities for $2\pi$ below 1.0 GeV



P. Masjuan. Phys.Lett.B 850 (2024) 138492

- When all other contributions are added, we get the overall result for each window quantity.
- The contributions of the intermediate window using tau data are slightly closer to the lattice results (~1.5σ).

| $a_{\mu}^{ m HVP,LO}$                             |           |                       |                              |                              |  |
|---------------------------------------------------|-----------|-----------------------|------------------------------|------------------------------|--|
|                                                   | SD        | int                   | LD                           | Total                        |  |
| $	au$ -data $\mathcal{O}(p^4) \leq 1$ GeV         | 69.0(5)   | $234.0(^{1.2}_{1.3})$ | $402.5\binom{3.3}{3.4}$      | $705.5({5.0\atop 5.2})$      |  |
| $	au$ -data $\mathcal{O}(p^6) \leq 1 \text{ GeV}$ | 68.9(5)   | 233.3(1.4)            | $398.5(\substack{4.9\\4.2})$ | $700.7(^{6.8}_{6.1})$        |  |
| $	au$ -data $\mathcal{O}(p^4)$                    | 69.0(7)   | 234.2(2.0)            | $402.6(\frac{3.8}{3.9})$     | $705.8(\substack{6.5\\6.6})$ |  |
| $	au$ -data $\mathcal{O}(p^6)$                    | 68.9(7)   | 233.4(2.1)            | $398.5(\substack{5.3\\4.6})$ | $700.8(\substack{8.1\\7.4})$ |  |
| RBC/UKQCD 2018 [12]                               | _         | 231.9(1.5)            | _                            | 715.4(18.7)                  |  |
| ETMC 2021 [148]                                   | _         | 231.7(2.8)            | _                            | _                            |  |
| BMW 2020 [66]                                     | _         | 236.7(1.4)            | _                            | 707.5(5.5)                   |  |
| Mainz/CLS 2022 [67]                               | _         | 237.30(1.46)          | _                            | _                            |  |
| ETMC 2022 [68]                                    | 69.33(29) | 235.0(1.1)            | _                            | _                            |  |
| RBC/UKQCD 2023 [62]                               | _         | 235.56(82)            | _                            | _                            |  |
| WP [38]                                           | _         | _                     | _                            | 693.1(4.0)                   |  |
| BMW 2020/KNT [4,66]                               | _         | 229.7(1.3)            | _                            | —                            |  |
| Colangelo et al. $2022$ [69]                      | 68.4(5)   | 229.4(1.4)            | 395.1(2.4)                   | 693.0(3.9)                   |  |
| Davier et al. 2023 $[e^+e^-]$ [147]               | -         | 229.2(1.4)            | _                            | 694.0(4.0)                   |  |
| Davier et al. 2023 $[\tau]$ [125]                 |           | 232.4(1.3)            |                              |                              |  |



# Conclusions

- There is a global effort in improving the hadronic contributions to a<sub>µ</sub>. Specifically, dedicated studies to improve the HVP part from lattice, dispersion relations and improved e<sup>+</sup>e<sup>-</sup> data and Monte Carlos are being undertaken.
- Through the years, the tau data-driven estimation has always been approximately [2,2.5]σ away from the experimental average.
- The most recent lattice results (Mainz/CLS, ETMC, RBC/UKQCD) agree remarkably with BMWc in the intermediate window.
- We show that tau based results are compatible with the lattice evaluations in the intermediate window, being the e<sup>+</sup>e<sup>-</sup> based values in tension with both of them. This difference should be further scrutinized.

### References

- V. Cirigliano, G. Ecker and H. Neufeld, "Radiative tau decay and the magnetic moment of the muon", JHEP 0208, 002 (2002). e-Print: hep-ph/0207310 [hep-ph]
- A. Miranda and P. Roig. "New τ -based evaluation of the hadronic contribution to the vacuum polarization piece of the muon anomalous magnetic moment". Phys.Rev.D 102 (2020) 114017. e-Print: 2007.11019 [hep-ph]
- G. Colangelo et al. "Data-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarization". Published in: Phys.Lett.B 833 (2022) 137313. e-Print: 2205.12963 [hep-ph]
- P. Masjuan, A. Miranda and P. Roig. "τ data-driven evaluation of Euclidean windows for the hadronic vacuum polarization". Published in: Phys.Lett.B 850 (2024) 138492. e-Print: 2305.20005 [hep-ph]
- M. Davier, A. Hoecker, A.M. Lutz, B. Malaescu, Z. Zhang. "Tensions in e+e-→π+π-(γ) measurements: the new landscape of data-driven hadronic vacuum polarization predictions for the muon g-2". e-Print: 2312.02053 [hep-ph]

#### **Contributions at O(p<sup>4</sup>)**

• At  $O(p^4)$  in  $\chi PT$  with resonances ( $R\chi T$ ), the diagrams that contribute to these decays are:



JHEP 08 (2002) 002

#### **Contributions at O(p<sup>6</sup>)**

Using the basis given by Cirigliano et al. Nucl. Phys. B753 (2006) and Kampf & Novotný, Phys. Rev. D84 (2011), we get the following contributions at O(p<sup>6</sup>):



Phys. Rev. D 102 (2020) 114017

## HVP, LO from lattice QCD

• Comparison of recent results for the leading-order, hadronic vacuum polarization contribution to the anomalous magnetic moment of the muon:





#### τ vs e<sup>+</sup>e<sup>-</sup>

• The measured branching fractions for  $\tau^- \rightarrow \pi^- \pi^0 \nu_{\tau}$  compared to the predictions from the e<sup>+</sup> e<sup>-</sup>  $\rightarrow \pi^+ \pi^-$  spectral functions, applying the IB corrections.



Eur.Phys.J.C66:127-136,2010

#### HVP, LO from e<sup>+</sup>e<sup>-</sup> data

• Comparison of results for the HVP, LO, evaluated between 0.6 GeV and 0.88 GeV.



| Experiment      | $a_{\mu}^{\pi^{+}\pi^{-},LO}, 10^{-10}$ |
|-----------------|-----------------------------------------|
| before CMD2     | $368.8\pm10.3$                          |
| $\mathrm{CMD2}$ | $366.5\pm3.4$                           |
| SND             | $364.7\pm4.9$                           |
| KLOE            | $360.6\pm2.1$                           |
| BABAR           | $370.1\pm2.7$                           |
| BES             | $361.8\pm3.6$                           |
| CLEO            | $370.0\pm6.2$                           |
| SND2k           | $366.7\pm3.2$                           |
| CMD3            | $379.3\pm3.0$                           |

CMD-3. 2302.08834 [hep-ex]

# $\rho - \gamma$ mixing

•  $\rho - \gamma$  mixing corrections proposed in Eur.Phys.J.C71:1632,2011.



# **Euclidean windows**



- Short-distance  $\rightarrow$  cutoff effects
- Long-distance → Monte-Carlo noise
- Intermediate window: accessible with current resources
  - Precision of 0.4 0.6 %

Mattia Bruno. HADRON2023, June 5th 2023



#### **Form factor**



#### **Overall IB corrections**



#### **Short-distance constraints**

• Using the relations for 2-point Green functions at O(p<sup>4</sup>), we have:

$$F_V = \sqrt{2}F$$
  $G_V = rac{F}{\sqrt{2}}$   $F_A = F$ .

• Using the relations for 2 and 3-point Green functions at O(p<sup>6</sup>), we have:

$$F_V = \sqrt{3}F$$
  $G_V = \frac{F}{\sqrt{3}}$   $F_A = \sqrt{2}F.$ 

#### **Short-distance constraints**

• For the parameters contributing to the leading-order chiral LECs:

$$F_V G_V = F^2, \qquad F_V^2 - F_A^2 = F^2, F_V^2 M_V^2 = F_A^2 M_A^2, \qquad 4c_d c_m = F^2, 8 (c_m^2 - d_m^2) = F^2, \qquad c_m = c_d = \sqrt{2}d_m = F/2.$$

• For the even-intrinsic parity sector:

$$\lambda_{13}^P = 0, \quad \lambda_{17}^S = \lambda_{18}^S = 0,$$
  
 $\lambda_{17}^A = 0, \quad \lambda_{21}^V = \lambda_{22}^V = 0.$ 

• The analysis of the <VAS> Green function yields:

$$egin{aligned} &\kappa_2^S = \kappa_{14}^A = 0, \quad \kappa_4^V = 2\kappa_{15}^V, \quad \kappa_6^{VA} = rac{F^2}{32F_AF_V}, \ &F_V\left(2\kappa_1^{SV} + \kappa_2^{SV}
ight) = 2F_A\kappa_1^{SA} = rac{F^2}{16\sqrt{2}c_m}. \end{aligned}$$

# CVC prediction of $B_{\pi\pi0}$

 An important independent cross-check is provided by the tau branching fraction, another key quantity which can be directly measured.



$$B_{\pi\pi^0}^{\text{CVC}} = B_e \int_{4m_{\pi}^2}^{m_{\pi}^2} ds \sigma_{\pi^+\pi^-(\gamma)}(s) \mathcal{N}(s) \frac{S_{\text{EW}}}{R_{\text{IB}}(s)}$$

$$\mathcal{N}(s) = \frac{3|V_{ud}|^2}{2\pi\alpha_0^2 m_\tau^2} s \left(1 - \frac{s}{m_\tau^2}\right)^2 \left(1 + \frac{2s}{m_\tau^2}\right)$$

CMD-3. Phys.Rev.D 109 (2024) 11, 112002

#### **Short-distance constraints**

• For the parameters contributing to the leading-order chiral LECs:

$$F_V G_V = F^2, \qquad F_V^2 - F_A^2 = F^2, F_V^2 M_V^2 = F_A^2 M_A^2, \qquad 4c_d c_m = F^2, 8 (c_m^2 - d_m^2) = F^2, \qquad c_m = c_d = \sqrt{2}d_m = F/2.$$

• For the even-intrinsic parity sector:

$$\lambda_{13}^P = 0, \quad \lambda_{17}^S = \lambda_{18}^S = 0,$$
  
 $\lambda_{17}^A = 0, \quad \lambda_{21}^V = \lambda_{22}^V = 0.$ 

• The analysis of the <VAS> Green function yields:

$$egin{aligned} &\kappa_2^S = \kappa_{14}^A = 0, \quad \kappa_4^V = 2\kappa_{15}^V, \quad \kappa_6^{VA} = rac{F^2}{32F_AF_V}, \ &F_V\left(2\kappa_1^{SV} + \kappa_2^{SV}
ight) = 2F_A\kappa_1^{SA} = rac{F^2}{16\sqrt{2}c_m}. \end{aligned}$$

#### **Short-distance constraints**

• The study of the <VAP> and <SPP> Green functions yield the following restrictions on the resonance couplings:

$$\begin{split} \sqrt{2}\lambda_{0} &= -4\lambda_{1}^{VA} - \lambda_{2}^{VA} - \frac{\lambda_{4}^{VA}}{2} - \lambda_{5}^{VA} = \frac{1}{2\sqrt{2}} \left(\lambda' + \lambda''\right), \\ \sqrt{2}\lambda' &= \lambda_{2}^{VA} - \lambda_{3}^{VA} + \frac{\lambda_{4}^{VA}}{2} + \lambda_{5}^{VA} = \frac{M_{A}}{2M_{V}}, \\ \sqrt{2}\lambda'' &= \lambda_{2}^{VA} - \frac{\lambda_{4}^{VA}}{2} - \lambda_{5}^{VA} = \frac{M_{A}^{2} - 2M_{V}^{2}}{2M_{V}M_{A}}, \\ \lambda_{1}^{PV} &= -4\lambda_{2}^{PV} = -\frac{F\sqrt{M_{A}^{2} - M_{V}^{2}}}{4\sqrt{2}d_{m}M_{A}}, \quad \lambda_{1}^{PA} = \frac{F\sqrt{M_{A}^{2} - M_{V}^{2}}}{16\sqrt{2}d_{m}M_{V}}. \end{split}$$

• For the odd-intrinsic parity sector:

$$\kappa_{14}^{V} = \frac{N_{C}}{256\sqrt{2}\pi^{2}F_{V}}, \quad 2\kappa_{12}^{V} + \kappa_{16}^{V} = -\frac{N_{C}}{32\sqrt{2}\pi^{2}F_{V}}, \quad \kappa_{17}^{V} = -\frac{N_{C}}{64\sqrt{2}\pi^{2}F_{V}}, \quad \kappa_{5}^{P} = 0,$$
  
$$\kappa_{2}^{VV} = \frac{F^{2} + 16\sqrt{2}d_{m}F_{V}\kappa_{3}^{PV}}{32F_{V}^{2}} - \frac{N_{C}M_{V}^{2}}{512\pi^{2}F_{V}^{2}}, \quad 8\kappa_{2}^{VV} - \kappa_{3}^{VV} = \frac{F^{2}}{8F_{V}^{2}}.$$

#### **Fit results**

• We perform a global fit using the relations for the resonance saturation of the anomalous sector LECs:

$$\begin{split} \kappa_1^V &= (-2.1 \pm 0.7) \cdot 10^{-2} \text{ GeV}^{-1}, \\ \kappa_2^V &= (-8.8 \pm 9.1) \cdot 10^{-3} \text{ GeV}^{-1}, \\ \kappa_3^V &= (2.2 \pm 5.8) \cdot 10^{-3} \text{ GeV}^{-1}, \\ \kappa_6^V &= (-2.1 \pm 0.3) \cdot 10^{-2} \text{ GeV}^{-1}, \\ \kappa_7^V &= (1.2 \pm 0.5) \cdot 10^{-2} \text{ GeV}^{-1}, \\ \kappa_8^V &= (3.1 \pm 0.9) \cdot 10^{-2} \text{ GeV}^{-1}, \\ \kappa_9^V &= (-0.1 \pm 5.9) \cdot 10^{-3} \text{ GeV}^{-1}, \\ \kappa_{10}^V &= (-5.9 \pm 9.6) \cdot 10^{-3} \text{ GeV}^{-1}, \\ \kappa_{11}^V &= (-3.0 \pm 0.6) \cdot 10^{-2} \text{ GeV}^{-1}, \\ \kappa_{12}^V &= (1.0 \pm 0.8) \cdot 10^{-2} \text{ GeV}^{-1}, \\ \kappa_{13}^V &= (-5.3 \pm 1.1) \cdot 10^{-3} \text{ GeV}^{-1}, \\ \kappa_{18}^V &= (4.7 \pm 0.8) \cdot 10^{-3} \text{ GeV}^{-1}. \end{split}$$

Phys.Rev.D 92 (2015) 025014 Phys. Rev. D 102 (2020) 114017

• These values are in good agreement with our earlier estimation  $|\kappa_i^{V}| < 0.025 \text{ GeV}^{-1}$ .