10th International Conference on Quarks and Nuclear Physics (QNP 2024)

July 11, 2024

Compatibility between e⁺e⁻ and tau decay data in the di-pion channels and implications for a_µ

Alejandro Miranda IFAE, Spain In collaboration with:

Gabriel Lopez Castro (Cinvestav, IPN, Mexico) Pablo Roig (Cinvestav, IPN, Mexico)

Institut de Física d'Altes Energies

Hadronic vacuum polarization

- At low energies QCD gets strongly interacting and a perturbative calculation is not feasible.
- Luckily, analyticity and unitarity allow us to express the leading hadronic vacuum polarization (HVP) contributions via a dispersion relation in terms of experimental data:

$$a_{\mu}^{ extsf{HVP,LO}} = rac{lpha^2}{3\pi^2} \int_{m_{\pi}^2}^{\infty} ds rac{ extsf{K}(s)}{s} extsf{R}(s),$$

Gourdin, De Rafael. Nucl.Phys.B 10 (1969) 667-674

where *K(s)* is a Kernel function $\longrightarrow K(s) \sim 1/s$,

$$R(s) = rac{\sigma^0(e^+e^-
ightarrow ext{hadrons}(+\gamma))}{\sigma_{pt}}, \quad \sigma_{pt} = rac{4\pi lpha^2}{3s}$$

- An evaluation of the HVP, LO contribution can be obtained from the measurements
 of σ(e⁺e⁻→hadrons) or the τ → ν_τ + hadron decays which can be related to the isovector component
 of the e⁺e⁻→hadrons cross section through isospin-symmetry.
- Since both are subject to **theoretical uncertainties**, it is a good strategy to keep using both.

Hadronic vacuum polarization

- About 73% of the contributions to the HVP and 58% of the total uncertainty correspond to the $\pi^+\pi^-$ (γ) final state at low energies ($4m_{\pi}^2 \le s \le 0.8 \,\text{GeV}^2$).
- For the two-pion final state,

$$\sigma_{\pi^+\pi^-}(s) = rac{\pi lpha^2 eta_{\pi^-\pi^+}^3(s)}{3s} \, |F_V(s)|^2 \, ,$$

• Including isospin-breaking corrections at LO, we have

$$\sigma_{\pi^+\pi^-}(s) = \left[rac{K_{\sigma}(s)}{K_{\Gamma}(s)}rac{d\Gamma_{\pi\pi[\gamma]}}{ds}
ight] rac{R_{IB}(s)}{S_{EW}},$$

where
$$R_{IB}(s) = \frac{FSR(s)}{G_{EM}(s)} \frac{\beta_{\pi^+\pi^-}^3}{\beta_{\pi^0\pi^-}^3} \left| \frac{F_V(s)}{f_+(s)} \right|^2$$
,

F. Jegerlehner. Springer Tracts Mod. Phys. 274 (2017)

- The ratio of neutral to charged current di-pion form factor and the long-distance em RadCor are challenging.
- **G**_{EM}(s) receives contributions from real and virtual photons.

Cirigliano et al. Phy. Lett. B513 (2001). JHEP 08 (2002) 002

Isospin-breaking corrections to $B_{\pi\pi0}$

Another important independent cross-check of the IB corrections is provided by the prediction of the branching ratio based on CVC.

$$\mathcal{B}_{\pi\pi^0}^{\text{CVC}} = \mathcal{B}_e \int_{4m_\pi^2}^{m_\tau^2} ds \,\sigma_{\pi^+\pi^-(\gamma)}(s) \mathcal{N}(s) \underbrace{\frac{S_{\text{EW}}}{R_{\text{IB}}(s)}}_{R_{\text{IB}}(s)}$$

The **IB corrections** to $\mathcal{B}_{\pi\pi^0}^{\text{CVC}}$ can be evaluated from

$$\Delta \mathcal{B}_{\pi\pi^0}^{\text{CVC}} = \mathcal{B}_e \int_{4m_\pi^2}^{m_\tau^2} ds \,\sigma_{\pi^+\pi^-(\gamma)}(s) \mathcal{N}(s) \left(\frac{S_{\text{EW}}}{R_{\text{IB}}(s)} - 1\right)$$

$$R_{IB}(s) = rac{FSR(s)}{G_{EM}(s)} rac{eta_{\pi^+\pi^-}^3}{eta_{\pi^0\pi^-}^3} \left| rac{F_V(s)}{f_+(s)}
ight|^2,$$

Isospin-breaking corrections

	$\Delta \mathcal{B}_{\pi^-\pi^0}^{\text{CVC}}$ (10 ⁻²)		τ decays	2 11 1	0-0-10-		•	fielle 25.2415	0.01±0.39	
Source	GS model	KS model				-		4 CLEO 25.36x1 ALEPH 25.47+0	0.12×0.42	
$S_{ m EW}$	+0.57	± 0.01				3 .	• •	DELPH 25.31±0	l 1.20±0.14	
G_{EM}	-0.07 ± 0.17			-			4	24.62±1	.3S±0.50	
FSR	-0.19	± 0.02				-	_	25.46±4	1.17+0.29	
ρ – ω interference	-0.01 ± 0.01	-0.02 ± 0.01						23.4014		
$m_{\pi^{\pm}} - m_{\pi^0}$ effect on σ	+0.19		e*e* CVC		+		+	CMD2 (25.03±4	13 (0.61-0.96) 1.22±0.22	
$m_{\pi\pm} - m_{\pi^0}$ effect on Γ_{ρ}	-0).22			+	• •		CMD2 24.82±0	610.37-0.52,0.6 22±0.22	1.38)
$m_{ ho\pm} - m_{ ho_{ m bare}^0}$	$+0.08\pm0.08$	$+0.09\pm0.08$		5 <u>-</u>				24.81±0 24.81±0 24.47±0	(0.39-0.97) (33±0.22 8(0.59-0.97) 122±0.22	
$\pi\pi\gamma$, electrom. decays	$+0.34\pm0.03$	$+0.37\pm0.04$						BABAR 25.15±0	09 (0,3-19),) (18+0.22	
					·			KLOE 1 24.53±4	0(0.32-0.92)).22±0.22	
Total	$+0.69 \pm 0.19$	$+0.72 \pm 0.19$						24.84=5	14:0.22	
	$+0.69\pm0.22$					97 1 6		Mirand 24,75±0	a & Boig 2020 Orp 129	(BABAR 12)
					-			Mitand 24.78	4 Brig 2030 Otp	PHRABAR 121
Fur Phys J C66 127 (2010)			23.5	24	24.5	25	25.5	26	26.5	27
Eur. Phys. J. Coo, 127 (2010)						$B(\tau^- \rightarrow v_{\tau})$	$\pi^{-}\pi^{0}$) (%)			

Phys. Rev. D 102 (2020) 114017

Form factors

- Now let us analyze in more detail the **IB effects** in the **form factors**.
- These IB breaking corrections were studied by Davier et al '09 using the Gounaris-Sakurai (GS) and Kühn-Santamaria (KS) parametrization.

$$R_{IB}(s) = \frac{FSR(s)}{G_{EM}(s)} \frac{\beta_{\pi^{+}\pi^{-}}^{3}}{\beta_{\pi^{0}\pi^{-}}^{3}} \left[\frac{F_{V}(s)}{f_{+}(s)} \right]^{2}, \qquad F_{\pi}(s) = \frac{1}{1 + c_{\rho'} + c_{\rho''}} \left(BW_{\rho}^{GS}(s, m_{\rho}, \Gamma_{\rho}) \left(1 + \delta_{\rho\omega} \frac{s}{m^{2}} BW_{\omega}^{KS}(s, m_{\omega}, \Gamma_{\omega}) \right) + c_{\rho'} BW_{\rho''}^{GS}(s, m_{\rho'}, \Gamma_{\rho'}) + c_{\rho''} BW_{\rho''}^{GS}(s, m_{\rho''}, \Gamma_{\rho''}) \right), \\ BW^{GS}(s, m, \Gamma) = \frac{m^{2} \left[1 + d(m)\Gamma/m \right]}{m^{2} - s + f(s, m, \Gamma) - im\Gamma(s, m, \Gamma)}, \qquad BW^{KS}(s, m, \Gamma) = \frac{m^{2}}{m^{2} - s - im\Gamma(s, m, \Gamma)}$$

• The Guerrero-Pich (GP) parametrization was employed by Cirigliano et al '02.

$$F_{V}(t) = \frac{m_{\rho^{0}}^{2}}{m_{\rho^{0}}^{2} - t - im_{\rho^{0}}\Gamma_{\rho^{0}}(t)} \left\{ \exp\left[2\tilde{H}_{\pi^{+}\pi^{-}}(t) + \tilde{H}_{K^{+}K^{-}}(t)\right] - \frac{\theta_{\rho\omega}}{3m_{\rho^{0}}^{2}} \frac{t}{m_{\omega}^{2} - t - im_{\omega}\Gamma_{\omega}} \right\}$$

Θρω is a real mixing parameter

$$f_{+}(t) = \frac{m_{\rho^{+}}^{2}}{m_{\rho^{+}}^{2} - t - im_{\rho^{+}}\Gamma_{\rho^{+}}(t)} \exp\left\{2\tilde{H}_{\pi^{+}\pi^{0}}(t) + \tilde{H}_{K^{+}K^{0}}(t)\right\} + f_{\text{local}}^{\text{elm}} + \cdots,$$

QNP2024

IB corrections to **FF**

• **IB corrections** in the ratio of the form factors in the **GS model**.

IB corrections to **FF**

• **IB corrections** in the ratio of the form factors in the **GP model**.

IB corrections to B_{ππ0}

• Contributions to $B_{\pi\pi0}$ from the isospin-breaking corrections for the different models.

$$\Delta\Gamma_{\rho} = 0.45 \pm 0.45 \text{ MeV}$$

IB corrections to B_{mu}

Contributions to $B_{\pi\pi0}$ from the isospin-breaking corrections for the different models. ٠

QNP2024

IB corrections to a_u

Contributions to a_u from the isospin-breaking corrections for the different models. ٠

Alejandro Miranda (IFAE)

Fit

• We perform a fit using the e+e- and tau data in the isospin-limit including the rho-omega mixing.

$$\begin{split} \chi^2 &= \sum_{k}^{\text{KLOE}} \left(\frac{\sigma_k^{\text{th}}(e^+e^- \to \pi^+\pi^-(\gamma)) - \sigma_k^{\exp}(e^+e^- \to \pi^+\pi^-(\gamma))}{\delta \sigma_k^{\exp}(e^+e^- \to \pi^+\pi^-(\gamma))} \right)^2 + \sum_{k}^{\text{CMD}-3} \left(\frac{|F_0^{\pi,\text{th}}|_k^2 - |F_0^{\pi,\exp}|_k^2}{\delta |F_0^{\pi,\exp}|_k^2} \right)^2 \\ &+ \sum_{k}^{\text{BABAR}} \left(\frac{\sigma_k^{\text{th}}(e^+e^- \to \pi^+\pi^-(\gamma)) - \sigma_k^{\exp}(e^+e^- \to \pi^+\pi^-(\gamma))}{\delta \sigma_k^{\exp}(e^+e^- \to \pi^+\pi^-(\gamma))} \right)^2 + \sum_{k}^{\text{Belle}} \left(\frac{|F_+^{\pi,\text{th}}|_k^2 - |F_+^{\pi,\exp}|_k^2}{\delta |F_+^{\pi,\exp}|_k^2} \right)^2 \end{split}$$

 Additionally, we consider a modification of the GP parametrization that includes the rho' and rho'' contributions.

$$F_{V}(s)^{\text{seed}} = \frac{M_{\rho}^{2} + s(\gamma e^{i\phi_{1}} + \delta e^{i\phi_{2}})}{M_{\rho}^{2} - s - iM_{\rho}\Gamma_{\rho}(s)} \exp\left\{\operatorname{Re}\left[-\frac{s}{96\pi^{2}F_{\pi}^{2}}\left(A_{\pi}(s) + \frac{1}{2}A_{K}(s)\right)\right]\right\}$$
$$- \gamma \frac{s e^{i\phi_{1}}}{M_{\rho'}^{2} - s - iM_{\rho'}\Gamma_{\rho'}(s)} \exp\left\{\frac{s\Gamma_{\rho'}(M_{\rho'}^{2})}{\pi M_{\rho'}^{3}\sigma_{\pi}^{3}(M_{\rho'}^{2})}\operatorname{Re}A_{\pi}(s)\right\}$$
$$- \delta \frac{s e^{i\phi_{2}}}{M_{\rho''}^{2} - s - iM_{\rho''}\Gamma_{\rho''}(s)} \exp\left\{\frac{s\Gamma_{\rho''}(M_{\rho''}^{2})}{\pi M_{\rho''}^{3}\sigma_{\pi}^{3}(M_{\rho''}^{2})}\operatorname{Re}A_{\pi}(s)\right\},$$

Fit results for the GS model

	BABAR12+Belle	KLOE12+Belle	KLOEc+Belle	CMD3+Belle	Global fit	Global fit
data points	337 + 62	60 + 62	85 + 62	209 + 62	337 + 60 + 209 + 62	337 + 85 + 209 + 62
χ^2	426.9	432.4	515.7	268.9	1830.2	3000.9
$\chi^2/{ m d.o.f}$	1.1	3.9	3.8	1.0	2.8	4.4
$m_{ ho}$	$774.0\pm0.1~{\rm MeV}$	$773.4\pm0.2~{\rm MeV}$	$773.5\pm0.1~{\rm MeV}$	$773.4\pm0.1~{\rm MeV}$	$773.5\pm0.1~{\rm MeV}$	$772.9\pm0.1~{\rm MeV}$
$\Gamma_{ ho}$	$148.9\pm0.3~{\rm MeV}$	$144.7\pm0.5~{\rm MeV}$	$147.1\pm0.3~{\rm MeV}$	$147.6\pm0.2~{\rm MeV}$	$146.6\pm0.2~{\rm MeV}$	$146.9\pm0.2~{\rm MeV}$
$ \delta_{ ho\omega} $	$(2.1\pm0.0)\cdot10^{-3}$	$(1.9\pm 0.1)\cdot 10^{-3}$	$(1.8\pm0.0)\cdot10^{-3}$	$(2.0 \pm 0.0) \cdot 10^{-3}$	$(1.9\pm0.0)\cdot10^{-3}$	$(2.0 \pm 0.0) \cdot 10^{-3}$
$\arg[\delta_{\rho\omega}]$	$(10.8 \pm 1.1)^{\circ}$	$(13.8 \pm 2.6)^{\circ}$	$(18.2 \pm 2.6)^{\circ}$	$(12.0 \pm 0.5)^{\circ}$	$(10.1 \pm 0.4)^{\circ}$	$(5.5 \pm 0.4)^{\circ}$
$ \delta_{ ho\phi} $	0^{\dagger}	0^{\dagger}	0^{\dagger}	$(2.2 \pm 0.2) \cdot 10^{-4}$	$(1.5 \pm 0.2) \cdot 10^{-4}$	$(1.4 \pm 0.2) \cdot 10^{-4}$
$\arg[\delta_{ ho\phi}]$	—	_	_	$(83.8 \pm 5.9)^{\circ}$	$(68.4 \pm 7.8)^{\circ}$	$(46.6 \pm 8.6)^{\circ}$
$m_{ ho'}$	$1460.9\pm5.9~{\rm MeV}$	$1412.9\pm7.8~{\rm MeV}$	$1398.9\pm6.7~{\rm MeV}$	$1459.0\pm7.0~{\rm MeV}$	$1433.3\pm4.8~{\rm MeV}$	$1443.7\pm5.2~{\rm MeV}$
$\Gamma_{ ho'}$	$444 \pm 14~{\rm MeV}$	$441\pm20~{\rm MeV}$	$445\pm20~{\rm MeV}$	$450\pm20~{\rm MeV}$	$403\pm12~{\rm MeV}$	$391 \pm 11 ~{\rm MeV}$
$\operatorname{Re}[c_{\rho'}]$	-0.12 ± 0.00	-0.11 ± 0.00	-0.11 ± 0.01	-0.10 ± 0.00	-0.09 ± 0.00	-0.11 ± 0.00
$\operatorname{Im}[c_{\rho'}]$	-0.03 ± 0.01	0.03 ± 0.01	-0.26 ± 0.02	-0.20 ± 0.02	-0.17 ± 0.01	-0.02 ± 0.00
$m_{ ho''}$	$1806.7\pm9.7~{\rm MeV}$	$1730^{\dagger} { m ~MeV}$	$1730^{\dagger} { m ~MeV}$	$1730^{\dagger} { m ~MeV}$	$1784.8\pm10.5~{\rm MeV}$	$1816.8 \pm 9.2 \text{ MeV}$
$\Gamma_{\rho^{\prime\prime}}$	$273\pm16~{\rm MeV}$	$260^{\dagger} { m MeV}$	$260^{\dagger} { m ~MeV}$	$260^{\dagger} {\rm ~MeV}$	$245\pm14~{\rm MeV}$	$245\pm16~{\rm MeV}$
$\operatorname{Re}[c_{\rho''}]$	$(2.9 \pm 0.5) \cdot 10^{-2}$	$(4.9 \pm 0.6) \cdot 10^{-2}$	$(-7.7\pm0.7)\cdot10^{-2}$	$(-7.5\pm0.6)\cdot10^{-2}$	$(-6.6\pm0.6)\cdot10^{-2}$	$(2.1 \pm 0.4) \cdot 10^{-2}$
$\operatorname{Im}[c_{\rho^{\prime\prime}}]$	$(4.5 \pm 0.3) \cdot 10^{-2}$	$(1.7 \pm 0.3) \cdot 10^{-2}$	$(-1.7\pm0.6)\cdot10^{-3}$	$(5.8\pm 6.7)\cdot 10^{-3}$	$(-2.9\pm0.4)\cdot10^{-2}$	$(4.0 \pm 0.2) \cdot 10^{-2}$

12

Fit results for the KS model

	BABAR12+Belle	KLOE12+Belle	KLOEc+Belle	CMD3+Belle	Global fit	Global fit
data points	337 + 62	60 + 62	85 + 62	209 + 62	337 + 60 + 209 + 62	337 + 85 + 209 + 62
χ^2	518.4	496.3	668.3	614.8	2270.6	3419.5
$\chi^2/d.o.f$	1.3	4.4	4.9	2.4	3.5	5.0
$m_{ ho}$	$772.3\pm0.1~{\rm MeV}$	$771.8\pm0.2~{\rm MeV}$	$771.6\pm0.1~{\rm MeV}$	$771.4\pm0.1~{\rm MeV}$	$771.8\pm0.1~{\rm MeV}$	$771.5 \pm 0.1 \text{ MeV}$
$\Gamma_{ ho}$	$147.5\pm0.3~{\rm MeV}$	$142.5\pm0.4~{\rm MeV}$	$145.0\pm0.3~{\rm MeV}$	$146.0\pm0.2~{\rm MeV}$	$145.5\pm0.2~{\rm MeV}$	$145.7\pm0.2~{\rm MeV}$
$ \delta_{\rho\omega} $	$(1.9\pm0.0)\cdot10^{-3}$	$(1.7\pm0.1)\cdot10^{-3}$	$(1.7\pm0.0)\cdot10^{-3}$	$(2.0\pm0.0)\cdot10^{-3}$	$(1.9 \pm 0.0) \cdot 10^{-3}$	$(1.9 \pm 0.0) \cdot 10^{-3}$
$\arg[\delta_{\rho\omega}]$	$(11.7 \pm 1.1)^{\circ}$	$(17.6 \pm 2.9)^{\circ}$	$(17.6 \pm 2.7)^{\circ}$	$(11.3 \pm 0.5)^{\circ}$	$(9.5 \pm 0.4)^{\circ}$	$(6.5 \pm 0.4)^{\circ}$
$ \delta_{ ho\phi} $	0^{\dagger}	0^{\dagger}	0^{\dagger}	$(2.8\pm0.2)\cdot10^{-4}$	$(1.7\pm0.2)\cdot10^{-4}$	$(1.4 \pm 0.2) \cdot 10^{-4}$
$\arg[\delta_{\rho\phi}]$	—	—	_	$(87.0 \pm 4.9)^{\circ}$	$(78.9 \pm 7.5)^{\circ}$	$(73.2 \pm 8.1)^{\circ}$
$m_{ ho'}$	$1536.1\pm9.5~{\rm MeV}$	$1425.2\pm8.3~{\rm MeV}$	$1476.7\pm8.0~{\rm MeV}$	$1575.8\pm10.9~{\rm MeV}$	$1564.9\pm9.3~{\rm MeV}$	$1547.5\pm8.1~{\rm MeV}$
$\Gamma_{ ho'}$	$538\pm18~{\rm MeV}$	$471 \pm 18~{\rm MeV}$	$474 \pm 14~{\rm MeV}$	$717\pm23~{\rm MeV}$	$450\pm17~{\rm MeV}$	$447\pm16~{\rm MeV}$
$\operatorname{Re}[c_{\rho'}]$	-0.13 ± 0.01	-0.13 ± 0.00	-0.13 ± 0.00	-0.23 ± 0.01	$(3.6 \pm 3.3) \cdot 10^{-2}$	$(-0.6 \pm 2.7) \cdot 10^{-2}$
$\operatorname{Im}[c_{\rho'}]$	-0.28 ± 0.02	-0.19 ± 0.02	-0.17 ± 0.02	-0.23 ± 0.01	-0.28 ± 0.03	-0.27 ± 0.02
$m_{ ho''}$	$1831.4\pm12.6~{\rm MeV}$	$1730^{\dagger} { m ~MeV}$	$1730^{\dagger} { m MeV}$	$1730^{\dagger} { m ~MeV}$	$1865.8\pm20.1~\mathrm{MeV}$	$1868.2 \pm 16.3 \text{ MeV}$
$\Gamma_{ ho''}$	$442\pm 33~{\rm MeV}$	$260^{\dagger} { m ~MeV}$	$260^{\dagger} { m ~MeV}$	$260^{\dagger} { m ~MeV}$	$721\pm53~{\rm MeV}$	650 ± 50 MeV
$\operatorname{Re}[c_{\rho''}]$	$-(8.4\pm1.5)\cdot10^{-2}$	$(-6.0\pm0.6)\cdot10^{-2}$	$(-5.0\pm0.7)\cdot10^{-2}$	$(1.9\pm1.0)\cdot10^{-2}$	-0.25 ± 0.04	-0.20 ± 0.03
$\operatorname{Im}[c_{\rho^{\prime\prime}}]$	0.13 ± 0.01	$(3.1\pm0.7)\cdot10^{-2}$	$(4.6 \pm 0.7) \cdot 10^{-2}$	0.10 ± 0.00	0.13 ± 0.02	0.12 ± 0.01

14

Fit results for the GP model

	BABAR12+Belle	KLOE12+Belle	KLOEc+Belle	CMD3+Belle	Global Fit	Global Fit
data points	270 + 19	60 + 19	85 + 19	172 + 19	270 + 60 + 172 + 19	270 + 85 + 172 + 19
χ^2	1671.7	572.5	848.9	3279.6	4887.1	5065.4
χ^2 /d.o.f	5.8	7.5	8.4	17.4	9.4	9.3
$m_{ ho}$	$776.0\pm0.1~{\rm MeV}$	$777.4\pm0.1~{\rm MeV}$	$776.0\pm0.1~{\rm MeV}$	$774.8\pm0.1~{\rm MeV}$	$775.5\pm0.1~{\rm MeV}$	$775.4\pm0.1~{\rm MeV}$
$\operatorname{Re} \delta_{\rho\omega} = \operatorname{Re}\left -\frac{\theta_{\rho\omega}}{3m_{\rho}}\right $	$(2.5 \pm 0.0) \cdot 10^{-3}$	$(2.6\pm 0.1)\cdot 10^{-3}$	$(2.5\pm 0.1)\cdot 10^{-3}$	$(2.5\pm 0.0)\cdot 10^{-3}$	$(2.5\pm 0.0)\cdot 10^{-3}$	$(2.5\pm 0.0)\cdot 10^{-3}$
$\operatorname{Im} \delta_{\rho\omega} = \operatorname{Im}\left -\frac{\theta_{\rho\omega}}{3m_{\rho}}\right $	$(0.3\pm 0.0)\cdot 10^{-3}$	$(0.4 \pm 0.1) \cdot 10^{-3}$	$(0.8\pm0.1)\cdot10^{-3}$	$(0.1\pm 0.0)\cdot 10^{-3}$	$(0.1\pm 0.0)\cdot 10^{-3}$	$(0.1 \pm 0.0) \cdot 10^{-3}$
$\delta_{\rho\omega}$	$(2.6 \pm 0.0) \cdot 10^{-3}$	$(2.6 \pm 0.1) \cdot 10^{-3}$	$(2.7 \pm 0.1) \cdot 10^{-3}$	$(2.5 \pm 0.0) \cdot 10^{-3}$	$(2.5 \pm 0.0) \cdot 10^{-3}$	$(2.5 \pm 0.0) \cdot 10^{-3}$
$\arg[\delta_{\rho\omega}]$	$(6.2 \pm 0.9)^{\circ}$	$(9.2 \pm 2.1)^{\circ}$	$(18.6 \pm 1.8)^{\circ}$	$(1.4 \pm 0.4)^{\circ}$	$(2.6 \pm 0.3)^{\circ}$	$(2.8 \pm 0.3)^{\circ}$

Fit results for the Seed model

	BABAR12+Belle	KLOE12+Belle	KLOEc+Belle	CMD3+Belle	Global fit	Global fit
data point:	337 + 62	60 + 62	85 + 62	209 + 62	337 + 60 + 209 + 62	337 + 85 + 209 + 62
χ^2	556.4	432.9	539.4	222.5	1662.7	2514.5
$\chi^2/d.o.f$	1.4	3.8	3.9	0.9	2.5	3.7
$m_{ ho}$	$774.6\pm0.1~{\rm MeV}$	$774.1\pm0.2~{\rm MeV}$	$773.7\pm0.1~{\rm MeV}$	$773.6\pm0.1~{\rm MeV}$	$773.8\pm0.1~{\rm MeV}$	$773.5\pm0.1~{\rm MeV}$
$ \delta_{\rho\omega} $	$(2.5 \pm 0.0) \cdot 10^{-3}$	$(2.4 \pm 0.1) \cdot 10^{-3}$	$(2.3 \pm 0.1) \cdot 10^{-3}$	$(2.5 \pm 0.0) \cdot 10^{-3}$	$(2.4 \pm 0.0) \cdot 10^{-3}$	$(2.4 \pm 0.0) \cdot 10^{-3}$
$\arg[\delta_{\rho\omega}]$	$(13.5 \pm 1.0)^{\circ}$	$(10.7 \pm 2.5)^{\circ}$	$(16.8 \pm 2.3)^{\circ}$	$(11.3 \pm 0.4)^{\circ}$	$(9.1 \pm 0.4)^{\circ}$	$(6.5 \pm 0.4)^{\circ}$
$ \delta_{ ho\phi} $	0†	0^{\dagger}	0†	$(2.8 \pm 0.2) \cdot 10^{-4}$	$(2.0 \pm 0.2) \cdot 10^{-4}$	$(2.1 \pm 0.3) \cdot 10^{-4}$
$\arg[\delta_{\rho\phi}]$	-	-	_	$(63.1 \pm 5.4)^{\circ}$	$(58.2 \pm 6.3)^{\circ}$	$(40.9 \pm 6.7)^{\circ}$
$m_{ ho'}$	$1397.2 \pm 8.3 \text{ MeV}$	$1413.8\pm11.7~{\rm MeV}$	$1406.3\pm12.1~{\rm MeV}$	$1449.2\pm11.5~{\rm MeV}$	$1414.5\pm3.3~{\rm MeV}$	$1369.4\pm7.8~{\rm MeV}$
$\Gamma_{\rho'}$	$324 \pm 15 \text{ MeV}$	386 ± 28 MeV	447 ± 33 MeV	385 ± 28 MeV	$231 \pm 7 \text{ MeV}$	$343\pm16~{\rm MeV}$
$\operatorname{Re}[c_{\rho'}]$	$(9.2 \pm 0.5) \cdot 10^{-2}$	0.11 ± 0.01	0.12 ± 0.00	0.13 ± 0.01	$(3.1 \pm 0.5) \cdot 10^{-2}$	$(7.9 \pm 0.5) \cdot 10^{-2}$
$\operatorname{Im}[c_{\rho'}]$	$(-5.1 \pm 0.6) \cdot 10^{-2}$	$(-8.8 \pm 0.9) \cdot 10^{-2}$	-0.12 ± 0.01	$(-4.7 \pm 0.8) \cdot 10^{-2}$	0.19 ± 0.01	$(-7.2 \pm 0.5) \cdot 10^{-2}$
$m_{ ho''}$	$1721.7\pm10.5~{\rm MeV}$	$1730^{\dagger} \text{ MeV}$	$1730^{\dagger} \text{ MeV}$	$1730^{\dagger} \text{ MeV}$	$1793.4\pm6.7~{\rm MeV}$	$1698.2\pm10.6~{\rm MeV}$
$\Gamma_{\rho^{\prime\prime}}$	$211\pm12~{\rm MeV}$	$260^{\dagger} \text{ MeV}$	$260^{\dagger} \text{ MeV}$	$260^{\dagger} \text{ MeV}$	$120\pm 6~{\rm MeV}$	$203\pm10~{\rm MeV}$
$\operatorname{Re}[c_{\rho''}]$	$(-8.1 \pm 0.5) \cdot 10^{-2}$	-0.11 ± 0.01	-0.12 ± 0.00	-0.11 ± 0.01	$(-2.7 \pm 0.4) \cdot 10^{-2}$	$(-7.3 \pm 0.5) \cdot 10^{-2}$
$\operatorname{Im}[c_{\rho^{\prime\prime}}]$	$(2.6 \pm 0.8) \cdot 10^{-2}$	$(4.1 \pm 0.8) \cdot 10^{-2}$	$(9.8 \pm 0.7) \cdot 10^{-2}$	$(2.0 \pm 0.7) \cdot 10^{-2}$	$(4.0 \pm 0.3) \cdot 10^{-2}$	$(4.5 \pm 0.8) \cdot 10^{-2}$

IB corrections to B_{ππ0}

• Contributions to $B_{\pi\pi0}$ from the isospin-breaking corrections for the different models.

Source		$\Delta \mathcal{B}_{\pi\pi}^{\text{CVC}}$	(10^{-2})			<u> </u>				
	\mathbf{GS}	\mathbf{KS}	GP	Seed	+	0.69±0.19	F	•		
$S_{ m EW}$		+0.5	57(1)		Davier et al.	KS				
$G_{ m EM}$		-0.0	$99(^{3}_{1})$		+	0.72±0.19		ŀ	•	-
\mathbf{FSR}		-0.1	.9(2)			GS		L .		
$m_{\pi^{\pm}} - m_{\pi^0}$ effect on σ		+0	.20		+	0.62±0.09			1	
$m_{\pi^{\pm}} - m_{\pi^0}$ effect on $\Gamma_{ ho}$	-0.21	-0.22	-0.22	-0.23		KS		·•		
$m_{K^{\pm}} - m_{K^0}$ effect on Γ_{ρ}	_	_	-0.02	-0.03	+	$0.64_{-0.09}^{+0.09}$				
$m_{ ho^\pm}-m_{ ho^0}$	+0.08(8)	+0.09(8)	-0.02(2)	-0.02(2)		GP 0 48 ^{+0.06}	·•			
$\rho - \omega$ interference	-0.08(0)	-0.09(0)	-0.09(0)	-0.06(0)		-0.05				
$\rho - \phi$ interference	-0.00(0)	-0.00(0)	_	-0.00(0)	+	Seed 0.49 ^{+0.06}	⊢ •			
$\pi\pi\gamma,$ electromagnetic decays	+0.34(3)	+0.37(4)	+0.34(4)	+0.34(4)		-0.05				
TOTAL	+0.62(9)	$+0.64(^{10}_{9})$	$+0.48(^{6}_{5})$	$+0.49({}^{6}_{5})$		0.2	0.4	0.6	0.8	1
					0.0	0.2	$\Delta B_{\pi\pi}^{CVC}$ (10)	⁻²)	0.0	1.

IB corrections to a_{μ}

• Contributions to a_{μ} from the **isospin-breaking corrections**.

		A had I Or	1(10-10)			() ()		0 0 1	
Source		$\Delta a_{\mu}^{\mathrm{nad},\mathrm{LO}}[\pi i$	$[\pi, \tau] (10^{-10})$						
	\mathbf{GS}	\mathbf{KS}	GP	Seed		$GS = -16.07 \pm 1.22$	· · · · · · · · · · · · · · · · · · ·		
$S_{ m EW}$		-11.96	6(0.15)		Davier et al.	VC			
$G_{ m EM}$		-1.71	$^{+0.61}_{-1.48}$			-16.70 ± 1.23	↓ • • •		
\mathbf{FSR}		+4.56	(0.46)			GS			
$m_{\pi^{\pm}} - m_{\pi^0}$ effect on σ		-7	.47			$-14.90^{+1.05}_{-1.70}$			
$m_{\pi^{\pm}} - m_{\pi^0}$ effect on Γ	+3.74	+4.12	+4.07	+4.13		KS			
$m_{K^\pm}-m_{K^0}$ effect on Γ	—	_	+0.37	+0.36		$-15.15^{+1.08}_{-1.73}$			
$m_{ ho^\pm}-m_{ ho^0}$	$+0.10\substack{+0.18 \\ -0.09}$	$-0.04\substack{+0.06\\-0.00}$	$+1.87^{+1.75}_{-1.68}$	$+1.86^{+1.75}_{-1.68}$		GP 12 12 ^{+2.03}	·	-•1	
$\rho - \omega$ interference	+3.84(0.08)	+4.00(0.08)	+4.33(0.07)	+3.57(0.07)		-12.13_2.39			
$\rho - \phi$ interference	+0.09(0.03)	+0.03(0.03)	—	+0.13(0.03)		Seed -12.74 ^{+2.03}	•	i	
$\pi\pi\gamma$	-6.09(0.67)	-6.68(0.74)	-6.19(0.68)	-6.21(0.68)		-2.39			
TOTAL	$-14.90^{+1.05}_{-1.70}$	$-15.15^{+1.08}_{-1.73}$	$-12.13^{+2.03}_{-2.39}$	$-12.74^{+2.03}_{-2.39}$	2 2 2	20		10	10
						-20	$\Delta a_{\mu}^{\rm HVP, LO}[\pi\pi, \tau] (10^{-10})$	-10	

There is a **good agreement** between the e⁺e⁻ **prediction** via CVC and **measurement**.

Conclusions

- An important independent cross-check is provided by the tau branching fraction, another key quantity which can be directly measured.
- There is a good agreement between prediction and experiment for BaBar and CMD-3.
- In light of the puzzling situation regarding the IB-breaking corrections in the tau-based method, there
 is a significant effort in the lattice in this regard.
- In this perplexing scenario, we insist about utilizing tau input for the dominant di-pion channel.

References

- V. Cirigliano, G. Ecker and H. Neufeld, "Radiative tau decay and the magnetic moment of the muon", JHEP 0208, 002 (2002). e-Print: hep-ph/0207310 [hep-ph]
- A. Miranda and P. Roig. "New τ -based evaluation of the hadronic contribution to the vacuum polarization piece of the muon anomalous magnetic moment". Phys.Rev.D 102 (2020) 114017. e-Print: 2007.11019 [hep-ph]
- G. Colangelo et al. "Data-driven evaluations of Euclidean windows to scrutinize hadronic vacuum polarization". Published in: Phys.Lett.B 833 (2022) 137313. e-Print: 2205.12963 [hep-ph]
- P. Masjuan, A. Miranda and P. Roig. "τ data-driven evaluation of Euclidean windows for the hadronic vacuum polarization". Published in: Phys.Lett.B 850 (2024) 138492. e-Print: 2305.20005 [hep-ph]
- M. Davier, A. Hoecker, A.M. Lutz, B. Malaescu, Z. Zhang. "Tensions in e+e-→π+π-(γ) measurements: the new landscape of data-driven hadronic vacuum polarization predictions for the muon g-2". e-Print: 2312.02053 [hep-ph]

Isospin-breaking corrections

	$\Delta \mathcal{B}_{\pi^-\pi^0}^{\rm CVC} \ (10^{-2})$				
Source	GS model	KS model			
$S_{\rm EW}$	+0.57	± 0.01			
$G_{ m EM}$	-0.07 ± 0.17				
FSR	-0.19 ± 0.02				
ρ – ω interference	-0.01 ± 0.01	-0.02 ± 0.01			
$m_{\pi^{\pm}} - m_{\pi^0}$ effect on σ	+0.19				
$m_{\pi^{\pm}} - m_{\pi^0}$ effect on Γ_{ρ}	-0	.22			
$m_{ ho\pm} - m_{ ho_{ m bare}^0}$	$+0.08\pm0.08$	$+0.09\pm0.08$			
$\pi\pi\gamma$, electrom. decays	$+0.34\pm0.03$	$+0.37\pm0.04$			
Total	$+0.69\pm0.19$	$+0.72\pm0.19$			
TOPAL	$+0.69\pm0.22$				

Eur. Phys. J. C66, 127 (2010)

