Recent results from the NA62 experiment at CERN

Ilaria Rosa, Scuola Superiore Meridionale (on behalf of NA62 Collaboration) July 11th, 2024

QNP 2024, Barcelona

A Kaon factory at CERN

Timeline of the NA62 Experiment: 2009-2014 Detector R&D Installation

Beam from the SPS: 400 GeV/c protons on Be target
 Secondary 75 GeV/c beam hadrons (70% π, 24% p and 6% K)
 Decay in flight: Kaons decay in a 60 meters long volume

The main aim of NA62 is to study the FCNC process $K^+ \rightarrow \pi^+ \nu \bar{\nu}$

Theory [arXiv:2109.11032] $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.60 \pm 0.42) \times 10^{-11}$

NA62 [JHEPO6 (2021) 093] $\mathscr{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (10.4^{+4.0}_{-3.4 \, stat} \pm 0.9_{syst}) \times 10^{-11}$

Detector overview

Upstream Detectors

KTAG: Cherenkov differential detector

GTK: silicon pixel beam tracker

CHANTI: anti counter against inelastic beam-G interactions

Downstream Detectors

	STRAW: track momentum spectrometer
	CHOD: plastic scintillators for fast charged trigger
TK3	RICH: Cherenkov counter for $\pi/\mu/e$ ID
	LKr and MUV1-2: calorimetric system
	MUV3: muon veto

$K^+ \rightarrow \pi^+ \gamma \gamma$ decay: overview

- Crucial test for Chiral Perturbation theory (ChPT)
- Two kinematic variables used to describe the decay

$$z = \frac{(q_1 + q_2)^2}{m_K^2} = \left(\frac{m_{\gamma\gamma}}{m_K}\right)^2$$

In the ChPT framework (at leading order O(p⁴) and including O(p⁶) contributions) the decay rate and **spectrum** are determined by a single priori unknown O(1) parameter \hat{c}

$$\frac{\partial^2 \Gamma}{\partial y \partial z} = \frac{m_K}{2^9 \pi^3} \left[z^2 (|A(\hat{c}, z, y^2) + B(z)|^2 + |C(z)|^2) + \left(y^2 - \frac{1}{4} \lambda(1, r_\pi^2, z) \right)^2 |B(z)|^2 \right]$$

$$y = \frac{p \cdot (q_1 - q_2)}{m_K^2}$$

 Q_i photon momenta

p kaon momenta

[D'Ambrosio and Portoles, PLB386 (1996) 403]

- Downscaled control and non-muon trigger lines.
- → Normalisation: $K^+ \rightarrow \pi^+ \pi^0$ decay, effectively (5.55 ± 0.03)×10¹⁰ kaon decays.
- Candidates observed: 3984.
- **Expected background:** 291±14.
- \rightarrow Kinematic variable $z = (m_{YY}/m_{K})^2$ computed using the missing mass (K-p).

$K^+ \rightarrow \pi^+ \gamma \gamma$ decay: data and selection

- ► ChPT O(p⁴) p-value: $2.7 \times 10^{-8} \rightarrow \text{not}$ sufficient to describe di-photon mass spectrum
- ► ChPT O(p⁶) p-value: 0.49

$$\mathbf{K}^{+} \rightarrow \mathbf{\pi}^{+} \gamma \gamma \mathbf{Q}$$

decay: results

ALPs in $K^+ \rightarrow \pi^+ a$, $a \rightarrow \gamma \gamma$ decays

→ Peak search over $m_a = \sqrt{(P_K - P_\pi)^2}$ in the range 207-350 MeV/c² in steps of 0.5 MeV/c² $\rightarrow m_a$ resolution: from 2.0 MeV/c² to 0.2 MeV/c² across the search range

- \rightarrow In each m_a hypothesis background estimated from simulations and UL on number of signal events set using CLs method

$\pi^0 \rightarrow e^+e^-decay$: overview

Experimentally observable:

$$\mathscr{B}(\pi^0 \to e^+ e^-(\gamma), x > x_{cut}), x$$

- Dalitz decay $\pi^0 \rightarrow e^+ e^- \gamma$ dominant in low-x region
- For $x > x_{cut} = 0.95$, Dalitz decay ≈ 3.3 of $\mathscr{B}(\pi^0 \to e^+e^-(\gamma$
- Previous best measurement by KTeV [Phys.Rev.D 75 (2007) 012004]

$$\mathscr{B}(\pi^0 \to e^+ e^-(\gamma), x > 0.95) = (6.44 \pm 0.25 \pm 0.22) \times 10^{-8}$$

Using latest radiative corrections in [JHEP 10 (2011) 122], [Eur.Phys.J.C 74 (2014) 8, 3010] the result can be extrapolated and compared with theory:

 $\mathcal{B}\left(\pi^{0}
ightarrow e^{+}e^{-}, ext{no-rad}
ight) imes10^{8}$

_		- •
	KTeV, PRD 75 (2007)	6.84
	Knecht et al., PRL 83 (1999)	6.2
	Dorokhov and Ivanov, PRD 75 (2007)	6.23
	Husek and Leupold, EPJC 75 (2015)	6.12
	Hoferichter et al., PRL 128 (2022)	6.25

$$= m_{ee}^2 / m_{\pi^0}^2$$

- 2(3) 3(9) 2(6) 5(3)

Preliminary

$\pi^0 \rightarrow e^+e^-decay$: results

→ Irreducible $K^+ \rightarrow \pi^+ e^+ e^-$ background Other backgrounds: $K^+ \rightarrow \pi^+ \pi_D^0$ with a lost or converted γ $K^+ \rightarrow \pi^+ \pi_{DD}^0$ with two undetected $e^+ e^-$

Fitted signal event yield: 597 ± 29

Branching fraction of $\pi^0 \rightarrow e^+e^-$

$$\mathscr{B}(\pi^0 \to e^+ e^-(\gamma), x > 0.95) = (5.86 \pm 0.30_{stat} \pm 0.11_{syst} \pm 0.19)$$

- result compatible with the KTeV measurement
- result in agreement with theoretical expectations when extrapolated using radiative corrections
- external uncertainty dominated by $\mathscr{B}(K^+ \to \pi^+ e^+ e^-)$

Preliminary

Normalisation selection

 $N_{\pi ee} = 21401$, $N_{K} = (1.97 \pm 0.02_{stat} \pm 0.02_{syst} \pm 0.06_{ext}) \times 10^{12}$

$$\mathscr{B}(K^+ \to \mu^- \nu e^+ e^+)$$

Signal selection ($N_B = 0.26 \pm 0.04$) No candidate observed in the signal region

 $< 8.1 \times 10^{-11} @ 90 \% C.L.$

Search for $K^+ \rightarrow \pi^0 \pi \mu e$

Mode	Expected Bkg	Candidates observed	U.L. @ 90% CL
$K^+ \to \pi^0 \pi^- \mu^+ e^+$	0.33 ± 0.07	0	2.9×10^{-10}
$K^+ \to \pi^0 \pi^+ \mu^- e^+$	0.004 ± 0.003	0	3.1×10^{-10}
$K^+ \rightarrow \pi^0 \pi^+ \mu^+ e^-$	0.29 ± 0.07	0	5.0×10^{-10}

NA62 in beam dump mode

Trigger lines

- Single track trigger, at least one signal in the CHOD

Q1/D, $D = 20 \rightarrow 14$ KHz

- Two-tracks trigger, at least two in-time signals form CHOD in two different tiles

 $H2 \rightarrow 18 \text{ kHz}$

- Control trigger LKr-based to measure efficiency of the charged triggers, 1MeV threshold

 $CTRL \rightarrow 4 \text{ kHz}$

30 Z [m] **Q1 trigger efficiency** = 99.8% H2 trigger efficiency = 98%

1.40 \pm 0.28 \times 10¹⁷ POT collected in \sim 10 days of data taking during the 2021 run

Search for DP in NA62 beam dump

- **1.** Bremsstrahlung production: $pN \rightarrow A'X$

Sensitivity per production mechanism assuming 0 observed events in 1.4×10¹⁷ POT

Two production mechanisms are in action in proton-nucleus interaction scenario:

2. Meson-mediated production: $pN \rightarrow MX$, $M \rightarrow A'\gamma$ (π^0 , η), where $M = \pi^0$, $\eta^{(\prime)}$, ρ , ω , etc.

Sensitivity per decay mode assuming 0 observed events in 1.4×10¹⁷ POT

Results for $A' \rightarrow \ell^+ \ell^-$

<u>JHEP 09, 035 (2023)</u> arXiv:2312.12055

 $A' \rightarrow \mu^+ \mu^- N_{obs} = 1$ (2.6 σ global significance) $A' \rightarrow e^+e^- N_{obs} = 0$

Model New Physics searches in hadronic decays

Numerous possibilities for exotic particle X being a dark photon (DP), dark scalar (DS), axion-like particle (ALP), ...

17

Results and interpretation

O event observed in the all the control and signal regions

$\blacktriangleright K^+ \rightarrow \pi^+ \gamma \gamma$

- Results consistent with previous measurements
- Improved precision, by a factor > 3, statistically dominated
- ChPT O(p⁴) is not sufficient to describe data
- First search for ALP with gluon coupling in $K^+ \rightarrow \pi^+ a, a \rightarrow \gamma \gamma$ decays

► $\pi^0 \rightarrow e^+e^-$ (new preliminary):

- Precision comparable with previous measurements, statistically dominated
- Full agreement with the latest theoretical expectations

LFV/LNV searches:

- Presented U.L. on $K^+ \rightarrow \mu^- \nu e^+ e^+$ decay
- NA62 performed the first search for the $K^+ \rightarrow \pi^0 \pi \mu e$ process
- $\blacktriangleright A' \rightarrow \ell^+ \ell^-$ and $X \rightarrow$ hadrons:
 - Blind analyses to search for exotic particle decays $A' \rightarrow \ell^+ \ell^-$ and $X \rightarrow hadrons$ have been performed on the data collected in 2021 exploring new regions of parameter space

Detector overview in beam dump mode

Sweeping

- B3 a triplet of magnetization-satured dipole magnets
- SCR a toroidally-magnetized iron collimator
- ► B5 and B6 magnets

Upstream

- COL cleaning collimator
- ANTIO scintillator hodoscope

Downstream

- STRAW spectrometer for momentum and direction measurements
- LKr, LAV, IRC and SAC photon veto system

Detector overview in kaon mode

Performances

- GTK-KTAG-RICH time resolution $\mathcal{O}(100 \, ps)$
- $\mathcal{O}(10^4)$ background suppression from kinematics
- → $\mathcal{O}(10^7)$ muon rejection for $15 < p(\pi^+) < 35 \ GeV$
- $\mathcal{O}(10^8)$ π rejection for $E(\pi^0) > 40 \, GeV$

- → Spectrometer $\sigma_p/p = (0.30 \oplus 0.005 \times p)\%$ [GeV/c]
- CHOD and NewCHOD resolution of 600 and 200 ps
- $\bullet \text{ LKr } \sigma_E / E = (4.8 / \sqrt{E} \oplus 11 / E \oplus 0.9) \% \text{ [GeV]}$

$K^+ \rightarrow \pi^+ \gamma \gamma$ decay: event selection and bkg

- One good track in the Spectrometer
- \blacktriangleright K- π matching using the GTK for kaon to define the K⁺ decay vertex
- Two good clusters in the LKr
- Kinematic cuts on kaon decay daughters: total energy conversion, total transverse momentum, invariant mass of the decay products should be consistent

- Cluster merging in LKr
 - $K^+ \to \pi^+ \pi^0 \gamma, \pi^0 \to \gamma \gamma$
 - $K^+ \rightarrow \pi^+ \pi^0 \pi^0, \pi^0 \rightarrow \gamma \gamma$ decays
- Multitrack events with tracks out of the Spectrometer acceptance
 - $K^+ \rightarrow \pi^+ \pi^- \pi^-$ decay (main contribution due to large branching fraction)

Use beam tracker GTK and Spectrometer to measure z variable

To validate background model: use control regions with enhanced background and check Data/MC agreement

LFV/LNV K⁺ and π^0 decays: state of the art

- Multi-track electron trigger line
- ⇒ Signal decay chain: $K^+ \to \pi^+ \pi^0, \pi^0 \to e^+ e^-$

→ Normalisation: $K^+ \rightarrow \pi^+ e^+ e^-$ decay selecting region $m_{ee} > 140$ MeV (8.62×10^{11} kaon decays collected)

BC4

New scalar singlet S, so-called dark scalar (DS) which, below to electroweak symmetry breaking scale, mixes with the SM H boson. In the minimal scenario this mixing is parametrised by an angle

$$\sin\theta_S = \frac{\mu v}{m_H^2 - m_S^2}$$

Where $v = 256 \, GeV$ is the EW vacuum expectation value, $m_H = 125 \, GeV$ is the mass of the physical H boson and μ is the coupling parameter parametrising the strength of the corresponding portal.

Production

The most efficient production mechanism of DS at a fixed target experiment is in the FCNC decays of heavy flavour mesons

$$B \to K^{(*)}S$$

Benchmarks and production mechanism

BC11

The third benchmark model is the BC11, an axion-like particle (ALP) a coupled to SM gluons in a dimension 5 portal

$$\mathcal{L}_{ALP} \supset g_s^2 \frac{C_{gg}}{\Lambda} a G^{i,\mu\nu} \tilde{G}^i_{\mu\nu}$$

Where $G_{i,\mu\nu}$ is the gluon field strength tensor, $G_{i,\mu\nu}$ is its dual and g_s is the strong coupling constant. The strength of the coupling is fixed by the ratio C_{gg}/Λ involving the energy scale Λ of the UV completion.

Production

On of the production mechanism of ALPs at a fixed target experiment is in the FCNC decays of heavy flavour mesons

At lower ALPs mass the Primakoff like effect is dominant

Dark photon: a detailed view

- New vector field F'_{µv} symmetric under a new U(1) symmetry feebly interacting with the SM fields
- A minimal extension to the SM: kinetic mixing with the SM hypercharge

 $-\frac{\epsilon}{2}F^{\prime\mu\nu}B_{\mu\nu}$

M(A') and ϵ are free parameters

DP searches in $\ell^+\ell^-$ final states

Signal signature

- $\ell^+\ell^-$ vertex in the NA62 fiducial volume
- Primary production vertex close to the proton TAX interaction point

Event selection

- Good quality tracks with timing in coincidence with each other and the trigger
- PID with LKr and MUV3
- In e⁺e⁻ analysis: decay region & PID optimization and no in-time activity in muon veto detector MUV3
- No in-time activity in LAV (and ANTIO in e⁺e⁻)
- Signal region (SR) selection (redefinition of SR for e⁺e⁻)

Signal region is kept blinded till the analysis freezing

JHEP 09, 035 (2023) arXiv:2312.12055

CDATAX closest distance of approach between the beam direction at the TAX entrance and $\ell^+\ell^$ direction $\sigma_{CDA} \sim 7 mm$

Z_{TAX} longitudinal position $\sigma_{Z} \sim 5.5 m$

$N_{exp} = POT \times P(pN \to A') \times \mathscr{B}(A' \to \ell^+ \ell^-) \times P_D \times A_{sel}$

▶ POT = 1.40 \pm 0.28 \times 10¹⁷, proton on target collected in 2021

- $\blacktriangleright P(pN \rightarrow A')$ DP production probability
- ► $\mathscr{B}(A' \to \ell^+ \ell^-)$ decay branching fraction
- \triangleright P_D probability for DP to reach the NA62 fiducial volume and decay therein
- $\blacktriangleright A_{sel}$ signal selection and trigger efficiencies

Expected yield on $A' \rightarrow \ell^+ \ell^-$

JHEP 09, 035 (2023) arXiv:2312.12055

The main expected backgrounds can be divided in two categories

Combinatorial background:

- Random superposition of two uncorrelated "halo" muons
- Dominant for $A' \rightarrow \mu^+ \mu^-$

Prompt background:

- Secondary interactions of incoming muons with the material traversed
- Dominant for for $A' \rightarrow e^+e^-$

Background summary

 $A' \rightarrow \mu^+ \mu^-$

	Combinatorial	Prompt @90% C.L.	Upstream prompt @90% C.L
Validation Region	0.17 ± 0.02	< 0.004	< 0.069
Signal Region	0.016 ± 0.002	< 0.0004	< 0.007

μ+ μ⁻

$A' \rightarrow \ell^+ \ell^-$ statistical analysis

- The exclusion limits are dirived using the CLs method on a grid of A' mass and coupling values
- The test statistic is the profiled likelihood ratio

 $q = -2 \ln q$

- yield.
- 15%.
- After unmasking, one event was observed in the signal region. In the absence of a dark photon signal, the
- A limit on the number of signal event counts is obtained using Poisson statistics with negligible background,
- A limit on the number of signal event counts is obtained using Poisson statistics with negligible background,

$$n \frac{L_{s+b}}{L_b}$$

computed by maximising separately the numerator and the denominator with respect to the nuisance parameters: the number of protons on TAX, the expected number of background events in SR and for L_{s+b} the expected signal

After unmasking, no events were observed in the validation region. The probability of a non-zero observation is

probability of a non-zero observation is 1.6%. The two-track invariant mass of the observed event is 411MeV/c^2 .

accounting for the uncertainty on the number of protons on target (POT) using a Bayesian nuisance parameter.

accounting for the uncertainty on the number of protons on target (POT) using a Bayesian nuisance parameter.

- [Phys. Lett. B 790 (2019) 537]
- \blacksquare Set limits in $BR(B \to K^*a) \times BR(a \to \mu^+\mu^-)$ vs. τ_a parameter space for each mass separately The result is found to improve on previous limits for masses below 280 MeV/c².

The result is interpreted in terms of the emission of axion-like particles in a model-independent approach.

- [Phys. Lett. B 790 (2019) 537]
- \blacksquare Set limits in $BR(B \to K^*a) \times BR(a \to e^+e^-)$ vs. τ_a parameter space for each mass separately

The result is interpreted in terms of the emission of axion-like particles in a model-independent approach.

2 hadronic track selection:

- 2 good quality tracks in coincidence with each other and with the trigger
- **BDT particle ID** selecting hadrons (calo. and MUV3), RICH used for tagging K
- No in-time activity in LAV, SAV and ANTIO
- decay vertex reconstructed in FV

Search strategy:

- Search **neutral clusters** in LKr and reconstruction of γ , π^0 , η based in time and opening angle
- Vertex reconstructed from final states is in the NA62 decay region and pointing back to the proton beam interaction point at the TAX.

Analysis strategy

Signal efficiency and expected yield

In model-independent case $X \to \pi^+\pi^-(BR(X \to \pi^+\pi^-) = 1)$:

 $N_{exp}(M_X, \Gamma_X) = POT \times \chi_{pp \to X}(C_{ref})) \times P_{rd} \times A_{acc} \times A_{trig}$

Figure: Left: expected $S \to \pi^+ \pi^-$ yield after full selection, assuming $g_{bs} = 10^{-4}$ and BR = 1. Center: acceptance after full selection for exotic particles that reached the FV and decayed therein. Right: Mass resolution of the reconstructed exotic particle.

Distributions obtained for 36 combinations of production and decay channels

- where $\chi_{pp \to X}(C_{ref})$ is X production probability for reference coupling
- P_{rd} is the probability to reach NA62 FV and decay therein
- $A_{acc} \times A_{trig}$ is the product between the signal selection and the trigger efficiencies

- combinatorial and neutrino-induced backgrounds: negligible contributions
- prompt background: inelastic interaction of halo muons can produce hadrons
- upstream background: formed by particles that are collected by the GTK achromat

	Channel	$N_{\mathrm{exp,CR}} \pm \delta N_{\mathrm{exp,CR}}$	$N_{\mathrm{exp,SR}} \pm \delta N_{\mathrm{exp,SR}}$	$N_{\rm obs,SR}^{p>5\sigma}$	$N_{\rm obs,SR+}^{p>5\sigma}$
	$\pi^+\pi^-$	0.013 ± 0.007	0.007 ± 0.005	3	4
	$ \pi^+\pi^-\gamma$	0.031 ± 0.016	0.007 ± 0.004	3	5
Number of background	$\pi^+\pi^-\pi^0$	$(1.3^{+4.4}_{-1.0}) \times 10^{-7}$	$(1.2^{+4.3}_{-1.0}) \times 10^{-7}$	1	1
events estimated at 68% CL	$\pi^{+}\pi^{-}\pi^{0}\pi^{0}$	$(1.6^{+7.6}_{-1.4}) \times 10^{-8}$	$(1.6^{+7.4}_{-1.4}) \times 10^{-8}$	1	1
	$\pi^+\pi^-\eta$	$(7.3^{+\bar{2}\bar{7.0}}_{-6.1}) \times 10^{-8}$	$(7.0^{+26.2}_{-5.8}) \times 10^{-8}$	1	1
	K^+K^-	$(4.7^{+15.7}_{-3.9}) \times 10^{-7}$	$(4.6^{+15.2}_{-3.8}) \times 10^{-7}$	1	2
	$K^+K^-\pi^0$	$(1.6^{+3.2}_{-1.2}) \times 10^{-9}$	$(1.5^{+3.1}_{-1.2}) \times 10^{-9}$	1	1

background-free hypothesis not only at $N_{POT} = 1.4 \times 10^{17}$ but also in the future full **Run 2 dataset** of $N_{POT} = 10^{18}$

- combinatorial and neutrino-induced backgrounds: negligible contributions
- prompt background: inelastic interaction of halo muons can produce hadrons
- upstream background: formed by particles that are collected by the GTK achromat

- combinatorial and neutrino-induced backgrounds: negligible contributions
- prompt background: inelastic interaction of halo muons can produce hadrons
- upstream background: formed by particles that are collected by the GTK achromat

Estimation using data-driven backward MC with measured μ halo + unfolding for correct kinematics

MC size equivalent of POT = 1.53×1017 (exceeding the data)

 $\pi\pi$ outside CR (in ANTIO acceptance + no vetoes) applied):

- $N_{exp} = 1.8 \pm 1.4 \text{ vs } N_{obs} = 1 \text{ (Upstream region)}$
- N_{exp} = 0.20 ± 0.15 vs N_{obs} = 1 (FV)

After applying full selection the prompt background expectations in CR and SR are below 10⁻⁴ in all channels

Channel	$N_{ m exp,CR} \pm \delta N_{ m exp,CR}$	$N_{ m exp,SR} \pm \delta N_{ m exp,SR}$
$\pi^+\pi^-$	$(5.7^{+18.5}_{-4.7}) \times 10^{-5}$	$(5.5^{+18.0}_{-4.5}) \times 10^{-5}$
$\pi^+\pi^-\gamma$	$(1.7^{+5.3}_{-1.4}) \times 10^{-5}$	$(1.6^{+5.2}_{-1.3}) \times 10^{-5}$
$\pi^+\pi^-\pi^0$	$(1.3^{+4.4}_{-1.0}) \times 10^{-7}$	$(1.2^{+4.3}_{-1.0}) \times 10^{-7}$
$\pi^+\pi^-\pi^0\pi^0$	$(1.6^{+7.6}_{-1.4}) \times 10^{-8}$	$(1.6^{+7.4}_{-1.4}) \times 10^{-8}$
$\pi^+\pi^-\eta$	$(7.3^{+27.0}_{-6.1}) \times 10^{-8}$	$(7.0^{+26.2}_{-5.8}) \times 10^{-8}$
K^+K^-	$(4.7^{+15.7}_{-3.9}) \times 10^{-7}$	$(4.6^{+15.2}_{-3.8}) \times 10^{-7}$
$K^+K^-\pi^0$	$(1.6^{+3.2}_{-1.2}) \times 10^{-9}$	$(1.5^{+3.1}_{-1.2}) \times 10^{-9}$

- combinatorial and neutrino-induced backgrounds: negligible contributions
- prompt background: inelastic interaction of halo muons can produce hadrons
- upstream background: formed by particles that are refocused by the GTK achromat

- 3 upstream background subcomponents observed in the control sample in the $Z_{VTX}-m_{\pi\pi}$ plane:
 - 19 interactions in the region upstream the FV
 - 2 $K_S \rightarrow \pi^+ \pi^-$ candidates
 - 8 $K^+ \rightarrow \pi^+ \pi^- \pi^-$ candidates, 6 of which identified as $\pi^+ \pi^-$ and 2 as $\pi^+ \pi^- \gamma$
- upstream interactions vetoed by ANTIO acceptance and vertex location
- for K_S 3 σ window (± 5.7 MeV/c²) around m_{K_S} kept masked
- K^+ -induced background simulated using selected single track K^+ forced to decay as $K^+ \rightarrow \pi^+ \pi^+ \pi^-$ in the FV

Why we don't have BC1?

After combining all the exotic particle production and decay channels, the expected number of events after full selection for the BC-1 benchmark with the hadronic decays is below one event for all the masses and coupling. Therefore there is no standalone exclusion counter for the hadronic decays at 90% C.L.. Nevertheless, the results of this analysis is expected to improve the overall sensitivity of the NA62 experiment for the BC1.

