

Status of the CBM experiment at FAIR and results from the CBM demonstrator experiment

Claudia Höhne, University Giessen & GSI for the CBM collaboration

QCD phase diagram

High T, low μ_B

- Crossover to QGP
- → Detailed investigations on properties of QGP
- LQCD: no CEP indication for $\mu/T<3$

Lower T, high μ_{B}

- Phase structure?
 - CEP?
 - 1st order phase transition?
 - New phases of QCD?
- Characterization of high- μ_B matter
- EOS?
- Properties of hadrons/ limits of hadron existence?

Bazavov *et al.* [HotQCD], PLB 795 (2019) 15-21 Isserstedt *et a*l. PRD 100 (2019) 074011 Ding *et al.*, [HotQCD], PRL 123 (2019) 6, 062002 Gao, Pawlowski, PLB 820 (2021) 136584 Borsanyi *et al.*, PRL 125 (2020) 5, 052001

QCD phase diagram

C.B.M. = CBM & HADES

Experimental investigation of region with 500 MeV < μ_B < 850 MeV

	$\sqrt{s_{NN}}$ [GeV]	μ _в [MeV]
SIS 18	2 – 2.5	830 - 760
SIS 100	2.3 – 5.3	785 – 520
SPS	5.1 – 17.3	530 - 220
STAR Collider	7.7 – 200	400 – 22
STAR FXT	3 – 13.7	700 – 265

 $\mu_B(\sqrt{s_{NN}})$ from A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Nature 561, no. 7723, 321 (2018)

Bazavov *et al.* [HotQCD], PLB 795 (2019) 15-21 Ding *et al.*, [HotQCD], PRL 123 (2019) 6, 062002 Borsanyi *et al.*, PRL 125 (2020) 5, 052001 Isserstedt *et a*l. PRD 100 (2019) 074011 Gao, Pawlowski, PLB 820 (2021) 136584

QCD phase diagram

C.B.M. = CBM & HADES

- Experimental investigation of region with $500 \text{ MeV} < \mu_B < 850 \text{ MeV}$
- Recent theory predictions favor μ_B around 600 MeV and T around 100 MeV for CP

	$\sqrt{s_{NN}}$ [GeV]	μ _B [MeV]
SIS 18	2 – 2.5	830 - 760
SIS 100	2.3 – 5.3	785 – 520
SPS	5.1 – 17.3	530 - 220
STAR Collider	7.7 – 200	400 – 22
STAR FXT	3 – 13.7	700 – 265

 $\mu_B(\sqrt{s_{NN}})$ from A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Nature 561, no. 7723, 321 (2018)

Borsanyi et al., PRL 125 (2020) 5, 052001

G. Basar, arXiv:2312.06952

Gunkel, Fischer, PRD 104 (2021) 5, 054022

Claudia Höhne, QNP 2024

(Key) observables

Worldwide effort to investigate high- μ_B region of the QCD phase diagram

Key observables are rare observables

- → Program needs ever more precise data (statistics!) and sensitivity for rarest signals!
- → Systematic investigation in dependence on energy, size/centrality

T. Galatyuk, NPA 982 (2019), update 2023

(Key) observables

Key observables – systematic measurements! :

- Dileptons
 - → Emissivity of dense baryonic matter: lifetime, temperature, density, in-medium properties
- Fluctuations
 - → System transition via 1st order PT line, CEP
- Hadrons/ Strangeness/ Charm
 → System in equilibrium, Hypernuclei, Vorticity, Flow, EOS
- Correlations
 - → Flow, Vorticity, YN & YNN interactions

Karen Arnold CCO Public Domain Licence

(Key) observables

Key observables – systematic measurements! :

Dileptons

 \rightarrow Emissivity of dense baryonic matter: lifetime, temperature, density, in-medium properties

Fluctuations •

 \rightarrow System transition via 1st order PT line, CEP

Hadrons Strangeness) Charm •

 \rightarrow System in equilibrium. Hypernuclei, Vorticity, Flow, EOS

- Correlations ٠
 - \rightarrow Flow, Vorticity, YN & YNN interactions

Domain Licence

Karen Arnold

Critical fluctuations

At CEP or when crossing a 1st order phase transition: density fluctuations/ jump in density

 \rightarrow both yielding discontinuities/ fluctuations

 \rightarrow Cumulants of baryon number measure derivatives of μ_B

$$\chi_n^B \equiv \frac{\partial^n (p/T^4)}{\partial (\mu_B/T)^n} = \frac{\kappa_n[B]}{V T^3}$$

Ratios of cumulants independent on V

$$\frac{\chi_4}{\chi_2} = \frac{K_4}{K_2} = \kappa \sigma^2 \qquad \qquad K_2 = \langle N - \langle N \rangle \rangle^2 \text{ etc}$$

V. Vovchenko et al., *Phys.Lett.B* 811 (2020) 135868

Measure event-by-event net-proton number (p – anti-p)
 → higher moments (statistics hungry! but more sensitive) probe the tails!

→ Important to systematically understand experimental effects: acceptance, centraliy, barýon number conservation at high µ_B

Critical fluctuations

CBM after 3 years – (improve STAR stat. errors by factor of 10):

- Measure excitation function (p) for $k\sigma^2 = \frac{\kappa_4}{\kappa_2}$
- First results on $\kappa_6(p)$
- Extension to strangeness?

We hope to see:

Discontinuity?!

... that extends to even higher moments?!

Claudia Höhne, QNP 2024

Critical fluctuations

CBM after 3 years – (improve STAR stat. errors by factor of 10):

- Measure excitation function (p) for $k\sigma^2 = \frac{\kappa_4}{\kappa_2}$
- First results on $\kappa_6(p)$
- Extension to strangeness?

We hope to see:

Discontinuity?!

... that extends to even higher moments?!

BES II results consisten with BES I CPOD 2024, STAR, A. Pandav

Dileptons

Em probes are sensitive to the full duration/evolution of the collision

- Emission of virtual photons from all stages
- Unique probe of temperature, duration, density, ...

Expected **dielectron** performance (first year, 5 days/ energy (6), $2x10^{10}$ events each = 5 days per energy)

Expected dimuon performance High statistics runs after first 3 years to access IMR range with <10% errrors onT_{fireball}

i, June 2022, T. Galatyuk for CBM

Dileptons

- Excess yield in LMR → fireball lifetime: extra radiation due to latent heat around PT (& CEP?)?
- Invariant mass slope (LMR & IMR) → flattening of caloric curve due to PT ?

T. Galatyuk, JPS Conf. Proc. 32 (2020) 010079k

Strangess & Z prospects with CBM

G.C. Yong et al,

1.3

1.2

1.1

Phys.Rev.C 106 (2022) 2, 024902

 Σ'/Σ'

ART Model

 $\rho_{\rm max} \approx 3.6 \rho_0$

Au+Au Collisions $\sqrt{s_{NN}} = 3 \text{ GeV}$

- Tracking system allows for precise track and 2ndary vertex reconstruction, $\Delta p=1\%$
- TOF for hadron ID

 \rightarrow measure yields, flow, correlations, Λ polarization, ...

• Identification of Σ^+ and Σ^- via their decay topology: search for kink!

$\Sigma^+ \rightarrow p \pi^0$	$\overline{\Sigma}{}^+ ightarrow \overline{p} \pi^0$	BR = 51.6%
$\Sigma^+ \longrightarrow n\pi^+$	$\overline{\Sigma}^+ \longrightarrow \overline{n} \pi^-$	BR = 48.3%
$\Sigma^{-} \rightarrow n\pi^{-}$	$\overline{\Sigma}$ - $\rightarrow \overline{n}\pi$ -	BR = 99.8%

- \rightarrow (p/n) like ratios! \rightarrow access to isospin dependence?
- → Σ^{-}/Σ^{+} ratio is expected to carry $E_{sym}(\rho)$ information (stiff/soft)

Claudia Höhne, QNP 2024

Hypernuclei

- Hypernuclei interesting/ important objects for neutron star descriptions
- Formation? YN and YY interactions? Influence on EOS for high densities?
- CBM energies optimum for production
- Reconstruction routines tested with STAR FXT data

Claudia Höhne, QNP 2024

FAIR & CBM

CBM @ FAIR

- 2.5° 25° polar angle coverage, tracking in large gap dipole magnet, particle ID afterwards
- First beams in 2028/2029
 - Years 1-3: (first) energy scan, improved statistical errors of factor 10 with respect to STAR
 - Years 4-8: high statistics measurements \rightarrow Dilepton IMR, ultra-rare probes

- FAIR construction progressing
 - ✓ SIS 100 tunnel ready, first installations ongoing
 - ✓ CBM cave ready
 - ✓ Upstream platform in CBM cave is installed being the first user installations of FAIR!

- FAIR construction progressing
 - ✓ SIS 100 tunnel ready, first installations ongoing
 - ✓ CBM cave ready
 - ✓ Upstream platform in CBM cave is installed being the first user installations of FAIR!

- FAIR construction progressing
 - ✓ SIS 100 tunnel ready, first installations ongoing
 - ✓ CBM cave ready
 - ✓ Upstream platform in CBM cave is installed being the first user installations of FAIR!

... and to make sure everybody visiting knows what will be installed here!!

... some more impressions!

CBM building

SIS100 tunnel

mCBM @ SIS18 (FAIR phase 0)

One major CBM challenge (& opportunity!) is the high rate:

- Free streaming readout
- Online reconstruction & trigger

Important milestone: mCBM @ SIS 18!

- Full system test
- Verification of triggerless-free-streaming readout
- Up to 10 MHz collision rates

mCBM @ SIS18 (FAIR phase 0)

One major CBM challenge (& opportunity!) is the high rate:

- Free streaming readout
- Online reconstruction & trigger

Important milestone: mCBM @ SIS 18!

- Full system test
- Verification of triggerless-free-streaming readout
- Up to 10 MHz collision rates

Λ reconstruction400-500kHz average collision rateOffline analysisNext step: online reconstruction

mCBM @ SIS18 (FAIR phase 0)

Late spring 2024: first beamtime with testing online trigger systems

- Multiplicity trigger: needs online unpacking and event building
- Online reconstruction and V0 topology trigger: needs online reconstruction and secondary vertex reconstruction on top
- Detailed evaluation ongoing

Claudia Höhne, QNP 2024

CBM construction

- Re-procurement of russian components ongoing
 - CBM magnet contract signed, production design review accomplished
 - New forward wall based on HADES concept in preparation
 - RICH, MUCH mechanics re-design/ re-procurement ongoing
- Detector (pre)-series production started

TRD modules (pre-series)

RICH photodetectorplane

Summary & Outlook

Future is bright!

(Pre)-series production of CBM started
 → Ready for first beams in 2028

- → Experimental data to contribute to open QCD questions:
- Phase structure of QCD at finite density
- Characterization of high μ_B matter
- Formation of hadrons, properties, interactions, correlations
- Formation of (hyper-)nuclei

That's us

