

Elucidating QCD using energy-energy correlator at RHIC and LHC

- **University of California, Berkeley/Lawrence Berkeley National Lab International Conference on Quarks and Nuclear Physics** 07/11/2024
- **Preeti Dhankher**

Jets probe a wide range of Q²

Jets probe a wide range of Q²

Jets probe a wide range of Q²

4

Energy-energy correlators (EECs)

- What are EECs?
- Why do we study EECs?
- What do we learn from EECs? \rightarrow Six lessons from EECs

ALI-PREL-540221

1()

Energy-energy correlators (E2C) at LHC and RHIC

• **STAR** at **RHIC** also measured EEC for jets in pp collisions. • Data at large R_{L} well-described by pQCD calculations.

Similar trend: Separation of perturbative & non-perturbative regimes.

Energy-energy correlators (E2C) at LHC and RHIC

• **STAR** at **RHIC** also measured EEC for jets in pp collisions. Similar trend: Separation of perturbative & non-perturbative regimes. • Data at large R_{L} well-described by pQCD calculations. ₁₇ o CMS at the LHC measured EECs at higher jet p_T and higher \sqrt{s} .

ALI-PREL-540173

18

Data compared to **PYTHIA 8** and HERWIG 7 MC generators

PYTHIA 8 uses Lund string model for hadronization

HERWIG 7 uses cluster model for *R*_L hadronization

What do we learn about hadronization? **ALICE** Preliminary **ALICE Preliminary ALICE Preliminary** dN_{EEC} dR pp $\sqrt{s} = 5.02 \text{ TeV}$ pp $\sqrt{s} = 5.02 \text{ TeV}$ pp $\sqrt{s} = 5.02 \text{ TeV}$ Anti- k_{T} ch-particle jets, R = 0.4Anti- $k_{\rm T}$ ch-particle jets, R = 0.4Anti- $k_{\rm T}$ ch-particle jets, R = 0.4 $60 < p_{T}^{ch jet} < 80 \text{ GeV}/c, |\eta_{iet}| < 0.5$ $40 < p_{T}^{ch jet} < 60 \text{ GeV}/c, |\eta_{iet}| < 0.5$ $20 < p_{T}^{ch jet} < 40 \text{ GeV}/c, |\eta_{iet}| < 0.5$ **ALICE** ALICE $6 - p_{T}^{trk} > 1.0 \text{ GeV}/c$ p_{T}^{trk} > 1.0 GeV/c $p_{\tau}^{\rm trk} > 1.0 \, {\rm GeV}/c$ - Data - Data \rightarrow Pythia 8 (Monash tune) ---- Pythia 8 (Monash tune) → Herwig 7 (2 \rightarrow 2 hard QCD) ---- Herwig 7 ($2 \rightarrow 2$ hard QCD) Data ---- Pythia 8 (Monash tune) --- Herwig / Data Pythia / Data 🗕 Pythia / Data --- Herwig / Data --- Herwig / Data 1.4 Pythia / Data Data 1.2 Model / 1 0.8 0.6 0.8 0.8 0.6 0.6 10^{-2} 10^{-2} 10^{-1} 10^{-1} 10^{-2} 10^{-1} $R_{\scriptscriptstyle m L}$ $R_{\rm I}$ -540177 ALI-PREL-540173

Both PYTHIA and HERWIG describe the data within 20% HERWIG better predicts the peak R_L position over PYTHIA

Data compared to **PYTHIA 8** and HERWIG 7 MC generators

PYTHIA 8 uses Lund string model for hadronization

HERWIG 7 uses cluster model for *R*_L hadronization

Scaling angle R_{L} by jet p_{T} and normalizing the y-scale.

Scaling angle R_{L} by jet p_{T} and normalizing the y-scale.

Scaling angle R_{L} by jet p_{T} and normalizing the y-scale.

EECs distribution in different jet p_T aligns around 2.4 GeV/c \rightarrow Universal scaling behavior !

Higher point energy correlator: EEEC (E3C)/EEC (E2C)

Higher point energy correlator: EEEC (E3C)/EEC (E2C)

arXiv: 2307.07510

EEEC (E3C)/EEC (E2C)

Flavor dependence in the QCD shower

Casimir color factors

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than quarkinitiated showers

Flavor dependence in the QCD shower

Casimir color factors

Gluon-initiated showers are expected to have a broader and softer fragmentation profile than guarkinitiated showers

Mass effects

A harder fragmentation is expected in low energy heavy-quark initiated showers due to the presence of a dead cone

Heavy-flavor jet EECs

Heavy-flavor jet EECs

- Small angle correlation suppressed for heavy-quark initiated jet (beauty < charm < light)
- Transition region shifted to larger R_{L} due to mass

Heavy-flavor jet EECs

- Small angle correlation suppressed for heavy-quark initiated jet (beauty < charm < light)
- Transition region shifted to larger $R_{\rm L}$ due to mass

Unique opportunities with ALICE due to the excellent PID + vertexing

before collision

after collision

before collision

after collision

In-vacuum parton shower

Early collinear parton shower

QGP

Medium-induced gluon cascade

Hadronization

before collision

after collision

Partons traversing through QGP:

- How does parton loses energy?
- How does energy redistribution happen?
- Role of parton color charge and mass?
- What's the path-length dependence?
- 0

Then find out about QGP: medium properties, transport coefficient ...

QGP introduces new scale: θ_{I} Splitting time: $\tau \sim 1/p_T \theta^2$ $\theta \sim 1/\sqrt{L}$

4

QGP introduces new scale: θ_L Splitting time: $\tau \sim 1/p_T \theta^2$ $\theta \sim 1/\sqrt{L}$

Impact of medium on jet: Jet modified by the medium

Bullet

Impact of medium on jet: Jet modified by the medium

Impact of jet on medium: Hydrodynamic wake

Different predictions for EECs in heavy-ion

CoLBT: Transport model with effect of medium "wake"

Different predictions for EECs in heavy-ion

Different predictions for EECs in heavy-ion

48

- We have entered an exciting era in studying QCD with energy-energy correlators.
 - peak $R_{\rm L}$ of the distribution over PYTHIA.
 - 1. Showed clear separation of perturbative and non-perturbative regime. 2. Data showed reasonable agreement with MC. HERWIG better predicts the
 - 3. Universal transition behavior: EEC distribution in different jet p_{T} intervals aligns around 2.4 GeV/c when angle $R_{\rm L}$ scaled by jet $p_{\rm T}$
 - 4. Highest precision constraint on $\alpha_{\rm S}$ using jet substructure.
 - 5. EEC amplitude and peak position depend on the flavor of the parton initiating the shower.
 - In heavy-ion collisions, EECs help to understand the QGP and put 6. constraints on jet quenching predictions.

Heavy quark production in pp collisions

(non perturbative)

