New direct and non-prompt photon yield and flow results from PHENIX in 200GeV Au+Au collision

Melinda Orosz

University of Debrecen HUN-REN ATOMKI

July 8, 2024

Institute for Nuclear Research

QNP2024

Introduction

- Direct photons have long been considered a golden probe to understand of the evolution of relativistic heavy-ion collisions – from the quark-gluon plasma (QGP) phase to the hadron-gas (HG) phase.
- Direct photons traverse the medium unmodified due to the small cross section of electromagnetic interaction
- These penetrating photons encode information about the environment
- High transverse momentum p_t direct photons \rightarrow dominated by photons created from initial hard-scattering processes
- Low p_T is dominated by radiation from the evolving partonic/hadronic medium → earlier terminology: thermal photons
- Current measurements → additional sources and mechanisms of direct-photon production → new name: non-prompt photons

Direct photon puzzle

- Several theoretical models 즯 have been developed
- Most of the models qualitatively √
- For quantitatively ø
- What was seen earlier?
 - high yield and high v₂ at the same time
 - $\bullet \ \leftrightarrow \ \text{old paradigm will not work}$
 - high yields means high T (early emission) ↔ high v₂ means late emission, where T is low
- Theoretical curves are below the yield and flow

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Experimental Setup

- For further insights \rightarrow PHENIX results from the 2014 Au+Au data at $\sqrt{S_{NN}} = 200 \, GeV$, with a 10× more statistics
- A new analysis method using the silicon-vertex detector (VTX) as photon converter
- The direct-photon measurement is based on the tracking and identification of e⁻ and e⁺ from photon conversions in the detector material
- Earlier 3 measurements at PHENIX → Internal conversion; External conversion far from vertex; Real photons in calorimeter
- This measurement → External photon conversions close to the vertex

Experimental Setup

- The VTX here acts as the photon converter, which is critical for this analysis
- Charged tracks are identified as electrons or positrons with a ring-imaging Ĉerenkov detector
- For the calorimetric identification of the e^-e^+ pair, E/p cut was used
- For the calorimetric identification of photons, two types of calorimeters are used: PbSc and PbGI

• A new track-reconstruction algorithm is developed \rightarrow the e^+ and e^- from a conversion have the same origin and that their momenta were initially parallel in radial direction

Double-ratio tagging method

 The number of direct photons is small ↔ the number of photons from hadron decays → for a precise measurement we need a tagging method

$$R_{\gamma} = \frac{\gamma^{incl}}{\gamma^{hadr}} = \frac{\frac{\gamma^{incl}}{\gamma^{\pi^{0}}}}{\frac{\gamma^{hadr}}{\gamma^{\pi^{0}}}} = \frac{<\epsilon_{\gamma}f > (\frac{N_{\gamma}^{incl}}{N_{\gamma}^{\pi^{0}, tag}})_{Data}}{(\frac{\gamma^{hadr}}{\gamma^{\pi^{0}}})_{Sim}}$$

- $N_{\gamma}^{incl}/N_{\gamma}^{\pi^{0},tag}$ the ratio of measured photon yields
- $<\epsilon_{\gamma}f>$ is the conditional acceptance and efficiency

•
$$\gamma^{hadr}/\gamma^{\pi^0}$$
 is the cocktail ratio

(1)

Ratio of the measured photon yields $N_{\gamma}^{incl}/N_{\gamma}^{\pi 0,tag}$

- e⁻ and e⁺ in a given event are combined to e⁺e⁻ pairs and conversion candidates are selected
- The conversion photon candidates are paired with all photons in the EMCal and the invariant mass is calculated; if it falls in the π^0 mass window, the conversion photon is "tagged"
- For e^+e^- pairs, there are two possible combinations, signal pairs of interest + uncorrelated background pairs: $FG^{ee} = SG^{ee} + BG^{ee}$
- For $e^+e^-\gamma$ combinations, both types of e^+e^- pairs are combined with photons that are either correlated or uncorrelated with the pair: $FG^{ee\gamma} = SG^{ee\gamma} + BG^{ee\gamma}_{corr} + BG^{ee\gamma}_{uncorr}$
- The final correction:

$$N_{\gamma}^{\pi^{0}, tag} = FG^{ee\gamma} - BG_{corr}^{ee\gamma} - (1 + f_{ee\gamma}) \times BG_{uncorr}^{ee\gamma}$$
(2)

Conditional probability $<\epsilon_{\gamma}f>$

- The conditional acceptance $\langle \epsilon_{\gamma} f \rangle$ is the probability that IF a conversions photon is detected AND it comes from a π^0 decay, it's partner in the EMCal will be found and their invariant mass will be in the π^0 window
- Individual π^{0} are tracked through the PHENIX MC-simulation framework

• The
$$\pi^0 \rightarrow \gamma \gamma$$
 decay channel was used

•
$$<\epsilon_{\gamma}f>=\frac{N_{ee}^{\pi^{0},tag}}{N_{ee}^{\pi^{0}}}$$

Result - 4 different R_{γ} PHENIX measurment

- The new results are compared with all other published PHENIX results → different methods + independent systematic uncertainties.
- Internal conversion (PRL 104, 132301)
- External conversion far from vertex (PRL 91, 064904)
- Real photons in calorimeter (PRL 109, 152302)
- External conversion close to the vertex (arXiv:2203.17187)

Result - Direct photon yield comparison

- The direct photon yield: $\gamma^{dir} = (R_{\gamma} 1)\gamma^{hadr} \rightarrow$ left picture for all centralities
- *p_T* > 5*GeV*/*c* is well described by the *N_{coll}*-scaled p+p result and pQCD calculations → high-pT direct photons are from hard-scattering processes
- Non-prompt photon yield = measured direct γ yield N_{coll} scaled (pp fit or pQCD)

Melinda Orosz

QNP2024

Result - Non-prompt photons

- The invariant yields are very consistent in the region of overlap
- The p_T -dependent inverse slopes (T_{eff}) for different fitting ranges are shown as a function of $dN_{ch}/d\eta$, a measure of centrality
- T_{eff} depends on the fitted p_T range, but almost no dependence on centrality

Scaling with multiplicity - integrated yields

• The integrated direct photon yield scaling function:

$$\frac{dN_{\gamma}}{dy} = \int_{p_{T},min}^{p_{T},max} \frac{dN_{\gamma}^{dir}}{dp_{T}dy} dp_{T} = A \times \left(\frac{dN_{ch}}{d\eta}\right)^{\alpha}$$
(3)

- Agreement with other direct-photon results
- Fit for previously published data: $\alpha = 1.23 \pm 0.06 \pm 0.18$
- Fit from the current data: $\alpha = 1.11 \pm 0.02 \pm 0.09$
- α smaller than predicted \rightarrow HG = 1.25 and QGP = 1.8
- The same scaling holds over vastly different collision energies (39-2760GeV) and systems (CuCu - PbPb)

Scaling with charged multiplicity - p_T yields

- At higher p_T the α corresponds to the N_{coll} scaling ↔ in lower p_T it tends to be smaller
- The values of α for the non-prompt component are constant with no evidence p_T dependence

Melinda Orosz

Elliptic flow - v_2

- Preliminary results from a recent analysis of direct photon elliptic flow
- Finer centrality bins than previously published
- The new results are consistent with earlier measurements \rightarrow the elliptic flow of direct photons in the low p_T region is large, and consistent with that of final state hadrons

Melinda Orosz

Summary

- New PHENIX data: 10× more statistic → + confirm earlier results + new kind of analysis → "direct photon puzzle" is still alive
- The experimentally observed inverse slopes of the *p_T* spectra are qualitatively consistent with predictions for thermal and pre-equilibrium radiation
- More photons emitted from Au+Au collisions than can be accounted for in model calculations
- Large anisotropy is observed for photons at pprox 2-3GeV/c
- In this p_T range, the yield is larger than what would be expected from a rapidly but anisotropically expanding hadronic fireball
- The centrality dependence of the nonprompt direct-photon yield, expressed in terms of the scaling power $\alpha(p_T)$, shows no indication of changing with p_T range

◆□▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 のへで 15/16

Thank you for your attention!

Melinda Orosz

Melinda Orosz