

Electroweak reactions with QMC methods

10th International Conference on Quarks and Nuclear Physics July 8th, 2024

Garrett King

Washington University in St. Louis

Advisors: Saori Pastore and Maria Piarulli

Collaborators: Andreoli, Baroni, Brown, Carlson, Cirigliano, Chambers-Wall, Gandolfi, Gnech, Hayen, Mereghetti, Schiavilla, Wiringa

Motivation

Fermi Lab / Sandbox Studio, Chicago

ENERGY DISTRIBUTION OF THE UNIVERSE

NASA / Chandra X-ray Center/ K. Divona

Symmetry Magazine / Sandbox Studio, Chicago

Nuclei for new physics

On-going effort to measure Standard Model (SM) allowed, SM forbidden, and known beyond SM phenomena to better understand new physics

Nuclei for new physics

On-going effort to measure Standard Model (SM) allowed, SM forbidden, and known beyond SM phenomena to better understand new physics

Nuclear theory needed to aid in the interpretation of new physics

Nuclei for new physics

On-going effort to measure Standard Model (SM) allowed, SM forbidden, and known beyond SM phenomena to better understand new physics

Nuclear theory needed to aid in the interpretation of new physics

Need an accurate and predictable model of nuclear physics at all relevant kinematics

Outline

- Microscopic description of nuclei
 - The many-body problem
 - Quantum Monte Carlo methods
 - The NV2+3 nuclear model
- Model validation
 - β-decay matrix elements
 - Magnetic structure (moments, form factors)
 - Muon capture rates
- Prediction of the ⁶He β-decay spectrum

Recent review:

King and Pastore, arXiv:2402.06602 (accepted Ann. Rev. Nucl. Part. Sci.)

Microscopic description of nuclei

Comprehensive theory that describes quantitatively and predictably nuclear structure and reactions in terms of nucleon degrees of freedom

Requirements:

- A computational method to solve the nuclear many-body problem and compute observables
- An accurate understanding of the interactions/correlations between nucleons in pairs, triplets, ... (two- and three-nucleon forces)
- An accurate understanding of the electroweak interactions of external probes (electrons, neutrinos, photons) with nucleons, correlated pairs of nucleons, ... (one-and two-body electroweak charges and currents)

Quantum many-body problem

Modeling physical phenomena in a system with many bodies interacting amongst themselves

$$H = \sum_{i} T_i + \sum_{i < j} v_{ij} + \sum_{i < j < k} V_{ijk} + \dots$$

Interaction generates *correlations* in solution of the Schrödinger equation

$$H|\Psi\rangle = E|\Psi\rangle$$

Mattuck, "A Guide to Feynman Diagrams in the Many-Body Problem", McGraw-Hill

Several approaches in nuclear physics:

Quantum Monte Carlo, No-core shell model (NCSM), couple cluster, ...

G.B. King, 7/8/2024

8

Quantum Monte Carlo (QMC)

Solving the many-body problem by stochastically solving the Schrödinger equation

Variational MC wave function $|\Psi_T\rangle=\mathcal{F}|\Phi\rangle$ contains model wave function and many-body correlations optimized by minimizing:

$$E_V = \min\left\{\frac{\langle \Psi_T | H | \Psi_T \rangle}{\langle \Psi_T | \Psi_T \rangle}\right\} \ge E_0$$

Green's function MC improves by **removing excited state contamination and gives the exact ground state**

$$\lim_{\tau \to \infty} e^{-(H - E_0)\tau} \Psi_V = \lim_{\tau \to \infty} e^{-(H - E_0)\tau} \left(c_0 \psi_0 + \sum_{i=1}^N c_i \psi_i \right) \to c_0 \psi_0$$

The Norfolk (NV2+3) interaction

$$H = \sum_{i} K_i + \sum_{i < j} \frac{\mathbf{v_{ij}}}{\mathbf{v_{ij}}} + \sum_{i < j < k} V_{ijk}$$

Model derived from χEFT with pion, nucleon, and delta degrees of freedom

NV2 contains 26 unknown LECs in contacts, two more from the NV3

Eight model classes arrived at from different procedures to constrain the unknown LECs

Electroweak charge and currents

Need nuclear electroweak charge and current operators as well

Schematically:
$$\rho = \sum_{i=1}^{A} \rho_i + \sum_{i < j} \rho_{ij} + \dots$$
$$\mathbf{j} = \sum_{i=1}^{A} \mathbf{j}_i + \sum_{i < j} \mathbf{j}_{ij} + \dots$$

External field interacts with single nucleons and correlated pairs of nucleons

Pastore et al. PRC 80, 034004 (2009), Pastore et al. PRC 84, 024001 (2011), Piarulli et al. PRC 87, 014006 (2013), Schiavilla et al. PRC 99, 034005 (2019), Baroni et al. PRC 93, 049902 (2016), ...

12

Model Validation

Beta-decay: Gamow-Teller matrix elements

Calculations with NV2+3-la* and NV2+3-la compared to AV18+IL7 (◊) and exp (dashes)

Correlations provide bulk of quenching

Two-body almost always enhances

Beta-decay: two-body densities

Different approaches to fitting the NV2+3 can result in different short-range behavior

This alters the total two-body contribution depending on the model

$$M_{\rm GT}^{\rm 2b} = \int dr_{ij} 4\pi r_{ij}^2 \rho_{\rm GT}^{\rm 2b}(r_{ij})$$

Magnetic structure: two-body currents

One-body picture:

$$\mu^{LO} = \sum_{i} (L_{i,z} + g_{p}S_{i,z}) \frac{1 + \tau_{3,i}}{2} + g_{n}S_{i,z} \frac{1 - \tau_{3,i}}{2}$$

Two-body currents can play a large role (up to ~33%) in describing magnetic dipole moments

Chambers-Wall, Gnech, King et al. arXiv:2407.03487, arXiv:2407. ...

G.B. King, 7/8/2024 15

Magnetic structure: form factors

NV2+3-IIb* is able to capture the shape of magnetic form factor

In some cases, good quantitative agreement at large momentum transfer

Two-body effects ~20% to 50% at large momentum transfer in various radioisotopes

Chambers-Wall, Gnech, King et al. arXiv:2407.03487, arXiv:2407. ...

Prediction: ⁶He β-decay spectrum

⁶He beta decay spectrum: Overview

Differential rate: $d\Gamma_{\beta} = |M_{\beta}(q)|^2 \times (\text{kinematic factors})$

In the $q \rightarrow 0$ limit:

$$\frac{d\Gamma_{\beta}}{dE_e} = \frac{d\Gamma_0}{dE_e} \left[1 + b \frac{m_e}{E_e} \right]$$

SM $(q \rightarrow 0)$:

$$b = 0$$

⁶He beta decay spectrum: Overview

Differential rate:

$$d\Gamma_{\beta} = |M_{\beta}(q)|^2 \times \text{(kinematic factors)}$$

In the $q \rightarrow 0$ limit:

$$\frac{d\Gamma_{\beta}}{dE_e} = \frac{d\Gamma_0}{dE_e} \left[1 + b \frac{m_e}{E_e} \right]$$

SM $(q \rightarrow 0)$:

$$b = 0$$

SM (with recoil):

$$b = 0 + \Delta b$$

⁶He beta decay spectrum: SM results

$$\tau_{VMC}$$
 = 762 +/- 11 ms
 τ_{GFMC} = 808 +/- 24 ms
 $\tau_{Expt.}$ = 807.25 +/- 0.16 +/- 0.11 ms
[Kanafani et al. PRC 106, 045502 (2022)]

$$\varepsilon = \frac{E_e}{W_0}$$

⁶He beta decay spectrum: BSM connections

Include new physics with strengths ϵ_i allowed from current analyses

With permille precision, it will be possible to further constrain new physics

$$\Lambda_{\rm BSM} \sim \frac{\Lambda_{\rm EW}}{\sqrt{\epsilon_i}} \sim 1 - 10 \text{ TeV}$$

Conclusions

Many-body plus χΕFT is a powerful to understand the impact of the nuclear dynamics on electroweak structure

Impact of different approaches to fitting potential, currents on observables

Ad-hoc uncertainty estimations have been performed for the model, but more robust UQ increasingly important (see Maria's talk Thu)

Future: neutrino-nucleus scattering, radiative corrections to beta decay

G.B. King, 7/8/2024 22

Acknowledgements

WU NS: Bub (GS), Chambers-Wall (GS), Andreoli (former), Flores (PD), McCoy (former), Novario (PD), Pastore (PI), Piarulli (PI)

ANL: Wiringa

JLab+ODU: Gnech, Schiavilla

LANL: Carlson, Gandolfi, Mereghetti

LPC Caen: Hayen

ORNL: Baroni

UW: Cirigliano

Funding from DOE/NNSA Stewardship Science Graduate Fellowship

G.B. King, 7/8/2024 23

Additional Slides

The Norfolk (NV2+3) Interaction

$$H = \sum_{i} K_i + \sum_{i < j} \frac{\mathbf{v_{ij}}}{\mathbf{v_{ij}}} + \sum_{i < j < k} V_{ijk}$$

Eight different Model classes:

- I [II]: NN scattering to fit two-body interaction from 0 to 125 [200] MeV
- a [b]: Long- and short-range regulators $(R_L, R_S) = (1.2 \text{ fm}, 0.8 \text{ fm}) [(1.0 \text{ fm}, 0.7 \text{ fm})]$
- Unstarred: Three-body term constrained with strong data only
- Star: Three-body term constrained with strong and weak data

Piarulli et al. PRL 120, 052503 (2018)

G.B. King, 7/8/2024 25

Variational Monte Carlo (VMC)

$$|\Psi_T
angle = \left[\mathcal{S}\prod_{i < j}(1 + \textcolor{red}{U_{ij}} + \sum_{k
eq i, j}\textcolor{blue}{U_{ijk}})\right] \left[\sum_{i < j}f_c(r_{ij})\right] |\Phi_A(JMTT_z)
angle$$

Slater determinant of nucleons in s- and p-shell coupled to the appropriate quantum numbers

Pair correlation operator encoding appropriate cluster structure

Two- and three-body correlation operator to reflect impact of nuclear interaction at short distances

Omptimize when you minimize:
$$E_V = \frac{\langle \Psi_V | H | \Psi_V \rangle}{\langle \Psi_V | \Psi_V \rangle} \geq E_0$$

G.B. King, 7/8/2024 26

Green's Function Monte Carlo (GFMC)

Can expand in exact states H: $|\Psi_V
angle = c_0 \psi_0 + \sum c_n |\psi_n
angle$

$$|\Psi_V\rangle = \frac{c_0\psi_0}{1} + \sum_{i=1}^{\infty} c_i |\psi_n\rangle$$

Imaginary time propagation:

$$\Psi(\tau) = e^{-(H - E_0)\tau} \Psi_V = \left[e^{-(H - E_0)\Delta\tau} \right]^n \Psi_V$$

Removes excited state contamination and gives the exact ground state

$$\lim_{\tau \to \infty} e^{-(H - E_0)\tau} \Psi_V \to c_0 \psi_0$$

Foulkes et al. Rev. Mod. Phys. 73, 33 (2001)

28

Mixed estimate

Assume small correction to VMC:

$$\Psi(\tau) = \Psi_V + \delta\Psi$$

To first order in the correction:

$$\langle \Psi(\tau) | \mathcal{O} | \Psi(\tau) \rangle = 2 \frac{\langle \Psi(\tau) | \mathcal{O} | \Psi_V \rangle}{\langle \Psi(\tau) | \Psi_V \rangle} - \langle \mathcal{O} \rangle_{\text{VMC}}$$

Pastore et al. PRC 87, 035503

Off-diagonal mixed estimate

 6 He → 6 Li GT RME extrapolation

Mixed estimate for off-diagonal transitions:

$$\langle \mathcal{O}(\tau) \rangle = \frac{\langle \Psi^f(\tau) | \mathcal{O} | \Psi^i(\tau) \rangle}{\sqrt{\langle \Psi^f(\tau) | \Psi^f(\tau) \rangle} \sqrt{\langle \Psi^i(\tau) | \Psi^i(\tau) \rangle}}$$
$$\simeq \langle \mathcal{O}(\tau) \rangle_{M_f} + \langle \mathcal{O}(\tau) \rangle_{M_i} - \langle \mathcal{O} \rangle_{\text{VMC}}$$

where

$$\langle \mathcal{O}(\tau) \rangle_{M_f} = \frac{\langle \Psi^f(\tau) | \mathcal{O} | \Psi_V^i \rangle}{\langle \Psi^f(\tau) | \Psi_V^i \rangle} \frac{\sqrt{\langle \Psi_V^f | \Psi_V^f \rangle}}{\sqrt{\langle \Psi_V^i | \Psi_V^i \rangle}}$$

G.B. King, 7/8/2024 29

Three-body LECs and N3LO-CT

$$\mathbf{j}_{5,a}^{\mathrm{N3LO}}(\mathbf{q}; \mathrm{CT}) = \mathbf{z_0} \mathcal{O}_{ij}(\mathbf{q})$$

$$z_0 \propto (c_D + \text{known LECs})$$

The NV2+3-Ia model fits c_D using strong interaction data only

The NV2+3-la* model fits c_D with strong and weak interaction data

Scaled two-body transition densities

Explanation of universal scaling behaviors

ST=01 and 10 pairs dominate short distances due to suppression of P-waves

$$N_{ST} = \int dr_{ij} 4\pi r_{ij}^2 \rho_M^{2b}(r_{ij})$$

33

¹⁰C to ¹⁰B GT beta decay

https://nucldata.tunl.duke.edu/

Two states of the same quantum numbers nearby

The result depends strongly on the *LS* mixing of the *p*-shell

Particularly sensitive to the 3S_1 and 3D_1 mixing because S to S produces a larger m.e. and ${}^{10}C$ is predominantly S wave

⁸He to ⁸LI GT beta decay

https://nucldata.tunl.duke.edu/

Three (1+;1) states within a few MeV

Different dominant spatial symmetries → sensitivity to the precise mixing of small components in the wave function

Improving the mixing of the small components in the $(1^+;1)$ states is crucial to getting an improved m.e.

Isoscalar (IS) two-body magnetic densities

$$\mu^{2b} = \int dr_{ij} 4\pi r_{ij}^2 \rho_M^{2b}(r_{ij})$$

Cutoff dependence: magnetic currents

Regulator choice between model la* and IIb* strongly influences the short-range dynamics

Partial Muon Capture Rates with QMC

Assuming a muon at rest in a Hydrogen-like 1s orbital:

$$\Gamma = \frac{G_V^2}{2\pi} \frac{|\psi_{1s}^{\text{av}}|^2}{(2J_i + 1)} \frac{E_\nu^{*2}}{\text{recoil}} \sum_{M_f, M_i} |\langle J_f, M_f | \rho(E_\nu^* \hat{\mathbf{z}}) | J_i, M_i \rangle|^2 + |\langle J_f, M_f | \mathbf{j}_z(E_\nu^* \hat{\mathbf{z}}) | J_i, M_i \rangle|^2$$

$$+ 2 \operatorname{Re} \left[\langle J_f, M_f | \rho(E_\nu^* \hat{\mathbf{z}}) | J_i, M_i \rangle \langle J_f, M_f | \mathbf{j}_z(E_\nu^* \hat{\mathbf{z}}) | J_i, M_i \rangle^* \right] + |\langle J_f, M_f | \mathbf{j}_x(E_\nu^* \hat{\mathbf{z}}) | J_i, M_i \rangle|^2$$

$$+ |\langle J_f, M_f | \mathbf{j}_y(E_\nu^* \hat{\mathbf{z}}) | J_i, M_i \rangle|^2 - 2 \operatorname{Im} \left[\langle J_f, M_f | \mathbf{j}_x(E_\nu^* \hat{\mathbf{z}}) | J_i, M_i \rangle \langle J_f, M_f | \mathbf{j}_y(E_\nu^* \hat{\mathbf{z}}) | J_i, M_i \rangle^* \right]$$

Partial muon capture rates with QMC

 $^3He(1/2+;1/2) \rightarrow ^3H(1/2+;1/2)$ agrees with datum of Ackerbauer et al. Phys. Lett. B 417 (1998)

Most sensitive to the 3N force

Two-body provide ~9%-16% of the rate for different models

Partial muon capture rates with QMC

 $^6Li(g.s.)$ → $^6He(g.s.)$ disagrees with datum from **Deutsch et al. Phys. Lett. B26, 315 (1968)**

Subsequent NCSM evaluation agrees with QMC results

Could merit further attention

⁶He Beta Decay Spectrum: Multipoles

The (standard model) matrix element may be decomposed into reduced matrix elements of four multipoles operators:

$$\sum_{M_i} \sum_{M_f} |\langle f | H_W | i \rangle|^2 \propto \sum_{J=0}^{\infty} \left[(1 + \hat{\boldsymbol{\nu}} \cdot \boldsymbol{\beta}) |C_J(q)|^2 + (1 - \hat{\boldsymbol{\nu}} \cdot \boldsymbol{\beta} + 2(\hat{\boldsymbol{\nu}} \cdot \hat{\mathbf{q}})(\hat{\mathbf{q}} \cdot \boldsymbol{\beta})) |L_J(q)|^2 - \hat{\mathbf{q}} \cdot (\hat{\boldsymbol{\nu}} + \boldsymbol{\beta}) 2 \operatorname{Re}(L_J(q) M_J^*(q)) \right] \\
+ \sum_{J=1}^{\infty} \left[(1 - (\hat{\boldsymbol{\nu}} \cdot \hat{\mathbf{q}})(\hat{\mathbf{q}} \cdot \boldsymbol{\beta})) (|M_J(q)|^2 + |E_J(q)|^2) + \hat{\mathbf{q}} \cdot (\hat{\boldsymbol{\nu}} - \boldsymbol{\beta}) 2 \operatorname{Re}(M_J(q) E_J^*(q)) \right]$$

With the standard operator definitions as [Walecka 1975, Oxford University Press]:

$$C_{JM}(q) = \int d^3x [j_J(qx)Y_{JM}(\Omega_x)](\rho(\mathbf{x}; V) + \rho(\mathbf{x}; J))$$

$$L_{JM}(q) = \frac{i}{q} \int d^3x \{\nabla[j_J(qx)Y_{JM}(\Omega_x)]\} \cdot (\mathbf{j}(\mathbf{x}; V) + \mathbf{j}(\mathbf{x}; A))$$

$$E_{JM}(q) = \frac{1}{q} \int d^3x [\nabla \times j_J(qx) \boldsymbol{\mathcal{Y}}_{JJ1}^M(\Omega_x)] \cdot (\mathbf{j}(\mathbf{x}; V) + \mathbf{j}(\mathbf{x}; A))$$

$$M_{JM}(q) = \int d^3x [j_j(qx) \boldsymbol{\mathcal{Y}}_{JJ1}^M(\Omega_x) \cdot (\mathbf{j}(\mathbf{x}; V) + \mathbf{j}(\mathbf{x}; A))$$

Parity and angular momentum selection rules preserve only the four J=1, positive parity multipoles for ⁶He beta-decay

G.B. King, 7/8/2024 40

⁶He beta decay spectrum: SM results

$$\tau_{VMC}$$
 = 762 +/- 11 ms
 τ_{GFMC} = 808 +/- 24 ms
 $\tau_{Expt.}$ = 807.25 +/- 0.16 +/- 0.11 ms
[Kanafani et al. PRC 106, 045502 (2022)]

$$\varepsilon = \frac{E_e}{\omega}$$

⁶He Beta Decay Spectrum: BSM Connections

Standard Model Effective Field Theory (SMEFT) gives most general set of gauge-invariant operators complimenting the SM

Tensor and pseudoscalar charged current interactions introduced at dimension-6

Matching the SMEFT to low-energy theory, one can investigate impact of BSM physics on the ⁶He beta-decay spectrum (effort led by Mereghetti+)

Muon capture: non-zero momentum transfer

Momentum transfer ~ 100 MeV/c

Two-body currents play a ~9%-16% role for A=3, ~3%-7% for A=6

Many-body calculations with χΕΓΤ based models not presently capturing the data

⁶He beta decay spectrum: SM results

Fully retain two-body physics by leveraging low-q behavior

$$C_{1}(q; A) = \frac{i}{\sqrt{4\pi}} \langle {}^{6}\text{Li}, 10 | \rho_{+}^{\dagger}(q\hat{\mathbf{z}}; A) | {}^{6}\text{He}, 00 \rangle$$

$$L_{1}(q; A) = \frac{i}{\sqrt{4\pi}} \langle {}^{6}\text{Li}, 10 | \hat{\mathbf{z}} \cdot \mathbf{j}_{+}^{\dagger}(q\hat{\mathbf{z}}; A) | {}^{6}\text{He}, 00 \rangle$$

$$E_{1}(q; A) = \frac{i}{\sqrt{2\pi}} \langle {}^{6}\text{Li}, 10 | \hat{\mathbf{z}} \cdot \mathbf{j}_{+}^{\dagger}(q\hat{\mathbf{x}}; A) | {}^{6}\text{He}, 00 \rangle$$

$$M_{1}(q; V) = -\frac{1}{\sqrt{2\pi}} \langle {}^{6}\text{Li}, 10 | \hat{\mathbf{y}} \cdot \mathbf{j}_{+}^{\dagger}(q\hat{\mathbf{x}}; V) | {}^{6}\text{He}, 00 \rangle$$

