Study of forbidden β decays within the realistic shell model

Università
 Degli Studi
 Della Campania
 Luigi Vanvitelli

Istituto Nazionale di Fisica Nucleare

Giovanni De Gregorio

Collaborators: Luigi Coraggio Nunzio Itaco Riccardo Mancino

QNP2024: 10th International Conference on Quarks and Nuclear Physics

- The problem of the renormalization of $\sigma\tau$ operator
- The impact on $0\nu\beta\beta$ decay matrix element
- The β spectrum, the shape function
- The Realistic Shell Model
- Details of the Calculation
- Conclusions and perspectives

- The problem of the renormalization of $\sigma\tau$ operator

Renormalization of στ matrix elements

Gamow-Teller transitions (β-decay, EC, 2vββ,charge-exchange) are hindered from expected values based on sum rules derived by nuclear structure models.

Renormalization of στ matrix elements

Gamow-Teller transitions (β-decay, EC, 2vββ,charge-exchange) are hindered from expected values based on sum rules derived by nuclear structure models.

Quenching of $\sigma\tau$ matrix elements is quite a general phenomenon in nuclear-structure physics.

$$g_A = g_A^{eff} = q \ g_A$$

Renormalization of $\sigma \tau$ matrix elements

Z. Phys. A - Atomic Nuclei 332, 413417 (1989)

$$g_A = g_A^{eff} = q g_A$$

Martinez-Pinedo et al. PRC53 2602(1996)

Suhonen, ACTA PHYSICA POLONICA B, 3 (2018)

Mass range	$g_{\mathrm{A}}^{\mathrm{eff}}$
Full $0p$ shell	$1.03^{+0.03}_{-0.02}$
0p-low $1s0d$ shell	1.18 ± 0.05
Full $1s0d$ shell	$0.96^{+0.03}_{-0.02}$
	1.0
$A = 41 - 50 \ (1p0f \text{ shell})$	$0.937^{+0.019}_{-0.018}$
1p0f shell	0.98
⁵⁶ Ni	0.71
$A = 52-67 \ (1p0f \text{ shell})$	$0.838^{+0.021}_{-0.020}$
$A = 67-80 \ (0f_{5/2}1p0g_{9/2} \text{ shell})$	0.869 ± 0.019
A = 63-96 (1p0f0g1d2s shell)	0.8
$A = 76-82 (1p0f0g_{9/2} \text{ shell})$	0.76
$A = 90-97 \ (1p0f0g1d2s \text{ shell})$	0.60
100 Sn	0.52
$A = 128 - 130 \ (0g_{7/2} 1d_{2s} 0h_{11/2} \text{ shell})$	0.72
$A = 130 - 136 (0g_{7/2} 1d_{2s} 0h_{11/2} \text{ shell})$	0.94
$A = 136 \ (0g_{7/2} 1d2s0h_{11/2} \text{ shell})$	0.57

Quenching of $\sigma\tau$ matrix elements: theory

Two main sources:

1) LIMITED MODEL SPACE

terms

H_{eff}

Ρ

Exact reproduction

of N eigenvalues

0

The only active degrees of freedom are given by nucleons inside the valence space (*valence nucleons*) while excitations of core nucleons and valence nucleons in the external space are "frozen" or, more properly, "not taken into account explicitly"

Quenching of $\sigma\tau$ matrix elements: theory

Two main sources:

2) NON-NUCLEONIC DEGREES OF FREEDOM

Processes in which the weak probe prompts a meson to be exchanged between two nucleons

→ meson-exchange two-body currents (2BC)

H. Hyuga and A. Arima, J. Phys. Soc. Jpn. Suppl. 34, 538 (1973)

Two-body e.w. currents effects

The contribution of 2BC improves systematically the agreement between theory and experiment

In-Medium SRG

Gysbers et al. Nature Phys. 15 428 (2019)

From ChEFT 2N +3N interaction

L. Coraggio et al. Physical Review C 109, 014301 (2024)

$2\nu\beta\beta$ decay

$$M_{GT}^{2\nu} = \sum_{k} \frac{\langle 0_f^+ ||\vec{\sigma} \cdot \tau^-||k\rangle \langle k||\vec{\sigma} \cdot \tau^-||0_i^+\rangle}{E_k + E_0}$$

Blue: bare J_A at LO in ChPT (namely the GT operator g_A)

$2ν\beta\beta$ decay

$$M_{GT}^{2\nu} = \sum_{k} \frac{\langle 0_f^+ \big| |\vec{\sigma} \cdot \tau^-| \big| k \rangle \langle k| |\vec{\sigma} \cdot \tau^-| |0_i^+ \rangle}{E_k + E_0}$$

Blue: bare J_A at LO in ChPT (namely the GT operator g_A)

Green: effective J_A at LO in ChPT

2νββ **decay**

$$M_{GT}^{2\nu} = \sum_{k} \frac{\langle 0_f^+ \big| |\vec{\sigma} \cdot \tau^-| \big| k \rangle \langle k| |\vec{\sigma} \cdot \tau^-| |0_i^+ \rangle}{E_k + E_0}$$

Blue: bare J_A at LO in ChPT (namely the GT operator g_A)

Green: effective J_A at LO in ChPT

Black: bare J_A at N3LO in ChPT

2νββ **decay**

$$M_{GT}^{2\nu} = \sum_{k} \frac{\langle 0_f^+ \big| |\vec{\sigma} \cdot \tau^-| \big| k \rangle \langle k| |\vec{\sigma} \cdot \tau^-| |0_i^+ \rangle}{E_k + E_0}$$

Blue: bare J_A at LO in ChPT (namely the GT operator g_A)

Green: effective J_A at LO in ChPT

Black: bare J_A at N3LO in ChPT

Red effective J_A at N3LO in ChPT

- The problem of the renormalization of $\sigma\tau$ operator
- The impact on $0\nu\beta\beta$ decay matrix element

Quenching of $\sigma\tau$ matrix elements & $0\nu\beta\beta$ decay

The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the NME ($M^{0\nu}$)

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} |M^{0\nu}|^2 \langle m_{\nu} \rangle^2 \propto g_A^4$$

- $G^{0\nu} \rightarrow$ phase space factor
- $\langle m_{\nu} \rangle = |\sum_{k} m_{k} U_{ek}|$, effective mass of the Majorana neutrino U_{ek} being the lepton mixing matrix

- The problem of the renormalization of $\sigma\tau$ operator
- The impact on $0\nu\beta\beta$ decay matrix element
- The β spectrum, the shape function

The total half-life of the β decay is expressed in terms of the k-th partial decay half-life as

where $\kappa = 6144$ s

The total half-life of the β decay is expressed in terms of the k-th partial decay half-life as

 \tilde{C} is the integrated shape function, whose integrand defines the β -decay energy spectrum

$$\tilde{C} = \int_{1}^{w_0} p_e w_e (w_0 - w_e)^2 F(Z, w_e) C_n(w_e) dw_e$$

- $F(Z, w_e) = F_0(Z, w_e)L_0(Z, w_e)$, F is the Fermi function and takes into account the distortion of the electron wave function by the nuclear charge and L_0 accounts for the finite size effect.
- w_e is the electron energy

where $\kappa = 6144$ s

C_n(w_e) is the shape factor of the n-th forbidden transition which depends on the nuclear matrix elements (NMEs) of the decay operators.

H. Behrens and W. Büring, Nuclear Physics Al62 (1971) **11** 1 – 144

$$\tilde{C} = \int_{1}^{w_0} p_e w_e (w_0 - w_e)^2 F(Z, w_e) C_n(w_e) dw_e$$

In general C_n is function of W_e .

For

allowed transition:
$$C_n(w_e) = \text{Const} = B(\text{GT}) = g_A^2 \frac{|\langle f|| \sum_k \sigma_k \tau_k^- ||i\rangle|^2}{2J_i + 1}$$

Beta spectrum is insensitive to B(GT)

J. Kostensalo and J. Suhonen, Phys. Rev. C 96, 024317 (2017)

$$\tilde{C} = \int_{1}^{w_0} p_e w_e (w_0 - w_e)^2 F(Z, w_e) C_n(w_e) dw_e$$

In general C_n is function of W_e .

For allowed transition: $C_n(w_e) = \text{Const} = B(\text{GT}) = g_A^2 \frac{|\langle f|| \sum_k \sigma_k \tau_k^- ||i\rangle|^2}{2J_i + 1}$

Beta spectrum is insensitive to B(GT)

Beta spectrum is insensitive to Lth-unique decays

The β **decay spectrum**

$$\tilde{C} = \int_{1}^{w_0} p_e w_e (w_0 - w_e)^2 F(Z, w_e) C_n(w_e) dw_e$$

Beta spectrum is sensitive to Lth-nonunique decays

 $\times 10^3$ - 0.5 40 - 1.0 - 0.8 gA free gA inf 35 ---14 --- 1.6 --- 2.0 Counts [per keV] M. Paulsen et al. arXiv:2309.14014v1 25 2015 10 5 0 300 50 100 150 200 250 0 Energy [keV]

J. Kostensalo and J. Suhonen, Phys. Rev. C 96, 024317 (2017)

$$\tilde{C} = \int_{1}^{w_0} p_e w_e (w_0 - w_e)^2 F(Z, w_e) C_n(w_e) dw_e$$

Beta spectrum is sensitive to Lth-nonunique decays

J. Kostensalo and J. Suhonen, Phys. Rev. C 96, 024317 (2017)

- 1. One can extract the empirical value of q from the β spectrum on forbidden non-unique decays.
- 2. Alternatively, having a microscopic theory without free parameters, β spectra offer a further benchmark of the theoretical framework.

- The problem of the renormalization of $\sigma\tau$ operator
- The impact on $0\nu\beta\beta$ decay matrix element
- The β spectrum, the shape function
- The Realistic Shell Model

Shell model: A well-established approach to obtain a microscopic description of both collective and single-particle properties of nuclei

Shell model: A well-established approach to obtain a microscopic description of both collective and single-particle properties of nuclei

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.

Shell model: A well-established approach to obtain a microscopic description of both collective and single-particle properties of nuclei

The degrees of freedom of the core nucleons and the excitations of the valence ones above the model space are not considered explicitly.

 $V_{NN} (+V_{NNN}) \downarrow$ $MANY BODY PERTURBATION THEORY \downarrow$ H_{eff}

Realistic shell-model calculations starting from a nuclear Hamiltonian and decay operators derived consistently

 $H \rightarrow H_{eff}$

$$H|\psi_{\nu}\rangle = E_{\nu}|\psi_{\nu}\rangle \rightarrow H_{eff}|\varphi_{\alpha}\rangle = E_{\nu}|\varphi_{\alpha}\rangle$$

 $|\varphi_{\alpha}\rangle$ = eigenvectors obtained diagonalizing H_{eff} in the reduced model space $|\varphi_{\alpha}\rangle$ = P $|\psi_{\nu}\rangle$

 $H \rightarrow H_{eff}$

$$H|\psi_{\nu}\rangle = E_{\nu}|\psi_{\nu}\rangle \rightarrow H_{eff}|\varphi_{\alpha}\rangle = E_{\nu}|\varphi_{\alpha}\rangle$$

 $|\varphi_{\alpha}\rangle$ = eigenvectors obtained diagonalizing H_{eff} in the reduced model space $|\varphi_{\alpha}\rangle = P |\psi_{\nu}\rangle$

 $\langle \varphi_{\nu} | \Theta | \varphi_{\lambda} \rangle \neq \langle \Psi_{\nu} | \Theta | \Psi_{\lambda} \rangle$

 $H \rightarrow H_{eff}$

$$H|\psi_{\nu}\rangle = E_{\nu}|\psi_{\nu}\rangle \rightarrow H_{eff}|\varphi_{\alpha}\rangle = E_{\nu}|\varphi_{\alpha}\rangle$$

 $|\varphi_{\alpha}\rangle$ = eigenvectors obtained diagonalizing H_{eff} in the reduced model space $|\varphi_{\alpha}\rangle = P |\psi_{\nu}\rangle$

 $\langle \varphi_{\nu} | \Theta | \varphi_{\lambda} \rangle \neq \langle \Psi_{\nu} | \Theta | \Psi_{\lambda} \rangle$

We then require an effective operator Θ_{eff} defined as follows

$$\Theta_{eff} = \sum_{\nu\lambda} |\varphi_{\nu}\rangle \langle \Psi_{\nu}|\Theta|\Psi_{\lambda}\rangle \langle \varphi_{\lambda}|$$

 $\left\langle \varphi_{\nu} \middle| \Theta_{eff} \middle| \varphi_{\lambda} \right\rangle = \left\langle \Psi_{\nu} \middle| \Theta \middle| \Psi_{\lambda} \right\rangle$

- The problem of the renormalization of $\sigma\tau$ operator
- The impact on $0\nu\beta\beta$ decay matrix element
- The β spectrum, the shape function
- The realistic shell model
- Details of the Calculation

Details of the Calculations

Calculations for nuclei in the neighborhood of $0\nu\beta\beta$ candidates above 78Ni core:

- Second forbidden non-unique gs to gs β -decay of ⁹⁴Nb and ⁹⁹Tc
- Fourth forbidden non-unique gs to gs β -decay of ¹¹³Cd and ¹¹⁵In

One major proton and neutron shell above ⁷⁸Ni

Interaction

 $V_{\text{low-k}}$ of CD-Bonn with Λ =2.6 fm⁻¹ + Coulomb force for protons

TBME +SP energies of H_{eff} & Θ_{eff} (a) third order +3-body correlations

$$ft = \frac{\kappa}{\tilde{c}} \int_{1}^{w_0} p_e w_e (w_0 - w_e)^2 F(Z, w_e) \, dw_e$$

	Bare	Effective	Ехр
⁹⁴ Nb	11.30	11.58	11.95 (7)
⁹⁹ Tc	11.580	11.876	12.325 (12)
¹¹³ Cd	21.902	22.493	23.127 (14)
¹¹⁵ ln	21.22	21.64	22.53 (3)

Conclusions

• The theoretical log*ft* moves towards experiment by employing the theoretical effective operators.

Conclusions

- The theoretical log*ft* moves towards experiment by employing the theoretical effective operators.
- The shape of the calculated energy spectra is rather insensitive to the choice of the β-decay operator, bare or effective, and in both cases the reproduction of the observed normalized energy spectra is more than satisfactory.

Conclusions

- The theoretical log*ft* moves towards experiment by employing the theoretical effective operators.
- The shape of the calculated energy spectra is rather insensitive to the choice of the β-decay operator, bare or effective, and in both cases the reproduction of the observed normalized energy spectra is more than satisfactory.
- Using the bare operator, but introducing a quenching factor of the axial constant to improve the reproduction
 of the experimental logfts, there is a distortion of the shape of the energy spectra that affects the agreement
 with the observed ones.

Conclusions

- The theoretical log*ft* moves towards experiment by employing the theoretical effective operators.
- The shape of the calculated energy spectra is rather insensitive to the choice of the β-decay operator, bare or effective, and in both cases the reproduction of the observed normalized energy spectra is more than satisfactory.
- Using the bare operator, but introducing a quenching factor of the axial constant to improve the reproduction
 of the experimental logfts, there is a distortion of the shape of the energy spectra that affects the agreement
 with the observed ones.

Perspectives

• Study of forbidden β decays in other mass regions, close to nuclei that are candidates for detecting the $0\nu\beta\beta$ decay

Conclusions

- The theoretical log*ft* moves towards experiment by employing the theoretical effective operators.
- The shape of the calculated energy spectra is rather insensitive to the choice of the β-decay operator, bare or effective, and in both cases the reproduction of the observed normalized energy spectra is more than satisfactory.
- Using the bare operator, but introducing a quenching factor of the axial constant to improve the reproduction
 of the experimental logfts there is a distortion of the shape of the energy spectra that affects the agreement
 with the observed ones.

Perspectives

- Study of forbidden β decays in other mass regions, close to nuclei that are candidates for detecting the 0vββ decay
- Tackle the forbidden β-decay problem starting from the derivation of electroweak currents by way of the chiral Perturbation theory

Presentation title

Details of the Calculations

- Nuclear Hamiltonian: Entem-Machleidt N3LO two-body potential plus N2LO three-body potential ($\Lambda = 500 \text{ MeV}$)
- Axial current J_A calculated at N3LO in ChPT
- Heff obtained calculating the Q-box up to the 3rd order in V_{NN} (up to 2p-2h core excitations) and up to the 1st order in V_{NNN}
- Effective operators are consistently derived by way of the MBPT
- fp-shell nuclei: four proton and neutron orbitals outside ⁴⁰Ca: 0f7/2, 0f5/2, 1p3/2, 1p1/2
- fpg-shell nuclei: four proton and neutron orbitals outside ⁵⁶Ni: 0f5/2, 1p3/2, 1p1/2, 0g9/2

RSM calculations, starting from ChPT two- and three-body potentials and two-body meson-exchange currents for spectroscopic and spin-isospin dependent observables of ⁴⁸Ca, ⁷⁶Ge, ⁸²Se

Quenching of στ matrix elements: meson exchange currents

Nowadays, EFT provides a powerful approach where both nuclear potentials and two electroweak currents may be consistently constructed, the latter appearing as subleading corrections to the one-body GT operator *o***t**[±]

Nuclear potential

Electroweak axial currents

The axial current J_A

The matrix elements of the axial current J_A are derived through a chiral expansion up to N3LO, and employing the same LECs as in 2NF and 3NF

$$J_A^{LO} = -g_A \sum_i \sigma_i \tau_{i,\pm}$$

$$J_A^{N^2LO} = \frac{g_A}{2m_N^2} \sum_i K_i \times (\sigma_i \ x \ K_i) \ \tau_{i,\pm}$$

$$J_A^{N^3LO}(1PE; \boldsymbol{k}) = \sum_{i < j} \frac{g_A}{2f_\pi^2} \Big\{ 4c_3 \,\tau_j \boldsymbol{k} + \left(\tau_i \times \tau_j \right)_{\pm} \times \Big[\left(c_4 + \frac{1}{4m} \sigma_i \times \boldsymbol{k} - \frac{i}{2m} K_i \right) \Big] \Big\} \sigma_j \cdot \boldsymbol{k} \frac{1}{\omega_k^2}$$

$$J_A^{N^3LO}(CT; \mathbf{k}) = \sum_{i < j} z_0 \left(\tau_i \times \tau_j\right)_{\pm} (\sigma_i \times \sigma_j)$$
$$z_0 = \frac{g_A}{2f_\pi^2 m_N^2} \left[\frac{m_N}{4g_A \Lambda_{\chi}} c_D + \frac{m_N}{3} (c_3 + 2c_4) + \frac{1}{6}\right]$$

A. Baroni, L. Girlanda, S. Pastore, R. Schiavilla, and M. Viviani, Phys. Rev. C 93, 015501 (2016)

 $H|\Psi_{\nu}\rangle = E_{\nu} |\Psi_{\nu}\rangle$

$$H = H_0 + H_1 = \sum_{i=1}^{A} T_i + U_i + \sum_{i < j} (V_{ij} - U_i)$$

$$H|\Psi_{\nu}\rangle = E_{\nu} |\Psi_{\nu}\rangle$$

$$H = H_0 + H_1 = \sum_{i=1}^{A} T_i + U_i + \sum_{i < j} (V_{ij} - U_i)$$

In the shell model, the nucleus is represented as an inert core, plus n valence nucleons moving in a limited number of SP orbits above the closed core and interacting through a model-space effective interaction. The valence or model space is defined in terms of the eigenvectors of H₀

$$H|\Psi_{\nu}\rangle = E_{\nu} |\Psi_{\nu}\rangle$$

$$H = H_0 + H_1 = \sum_{i=1}^{A} T_i + U_i + \sum_{i < j} (V_{ij} - U_i)$$

In the shell model, the nucleus is represented as an inert core, plus n valence nucleons moving in a limited number of SP orbits above the closed core and interacting through a model-space effective interaction. The valence or model space is defined in terms of the eigenvectors of H₀

$$|\phi_i\rangle = \left[a_1^{\dagger}a_2^{\dagger}a_3^{\dagger}\dots a_n^{\dagger}\right]_i |c\rangle \qquad i=1,2,\dots d$$

We are looking for a new hamiltonian \mathcal{H} that has the same eigenvalues of the A-nucleon system hamiltonian H, and satisfies the decoupling equation between the model space P and its complement Q:

QHP = 0 so that $H_{eff}\text{=}$ $P\mathcal{H}P$

We are looking for a new hamiltonian \mathcal{H} that has the same eigenvalues of the A-nucleon system hamiltonian H, and satisfies the decoupling equation between the model space P and its complement Q:

QHP = 0 so that $H_{eff}\text{=}$ $P\mathcal{H}P$

 $\mathcal{H}=\Omega^{-1}H\Omega$

(PHP	PHQ		(PHP	$P\mathcal{H}Q$
QHP	QHQ)	\rightarrow	0	$Q\mathcal{H}Q$ /

We are looking for a new hamiltonian \mathcal{H} that has the same eigenvalues of the A-nucleon system hamiltonian H, and satisfies the decoupling equation between the model space P and its complement Q:

QHP = 0 so that $H_{\rm eff}\text{=}$ $P\mathcal{H}P$

 $\mathcal{H}{=}\Omega^{-1}H\Omega$

$$\begin{pmatrix} PHP & PHQ \\ QHP & QHQ \end{pmatrix} \rightarrow \begin{pmatrix} P\mathcal{H}P & P\mathcal{H}Q \\ 0 & Q\mathcal{H}Q \end{pmatrix}$$

Suzuki-Lee $\Omega = e^{\omega} \qquad \omega = \begin{pmatrix} 0 & 0 \\ Q \omega P & 0 \end{pmatrix}$

$$H_{eff}(\omega) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ} \bigcirc H_1P - PH_1Q \frac{1}{\epsilon - QHQ} \bigcirc H_1^{eff}(\omega)$$

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ} \bigcirc H_1P$$

$$\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ} \bigcirc H_1P$$

Exact calculation of the $\hat{Q} - box$ is computationally prohibitive (for manybody system) we perform a perturbative expansion

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

Second order diagrams

Effective Shell-Model Operators

Consistently with the derivation of the effective Hamiltonian we have to derive effective transition operators, by way of the many-body perturbation theory

 $|\varphi_{\nu}\rangle = P|\Psi_{\nu}\rangle$

Obviously, for any decay-operator Θ

 $\langle \varphi_{\nu} | \Theta | \varphi_{\lambda} \rangle \neq \langle \Psi_{\nu} | \Theta | \Psi_{\lambda} \rangle$

Effective Shell-Model Operators

Consistently with the derivation of the effective Hamiltonian we have to derive effective transition operators, by way of the many-body perturbation theory

 $|\varphi_{\nu}\rangle = P|\Psi_{\nu}\rangle$

Obviously, for any decay-operator Θ

 $\langle \varphi_{\nu} | \Theta | \varphi_{\lambda} \rangle \neq \langle \Psi_{\nu} | \Theta | \Psi_{\lambda} \rangle$

We then require an effective operator Θ_{eff} defined as follows

$$\Theta_{eff} = \sum_{\nu\lambda} |\varphi_{\nu}\rangle \langle \Psi_{\nu}|\Theta|\Psi_{\lambda}\rangle \langle \varphi_{\lambda}| \qquad \qquad \langle \varphi_{\nu}|\Theta_{eff}|\varphi_{\lambda}\rangle = \langle \Psi_{\nu}|\Theta|\Psi_{\lambda}\rangle$$

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93, 905 (1995)

Forbidden β-decay ME

$$\phi_{nljm} = \begin{pmatrix} G_{nljm}(r) \\ F_{nljm}(r) \end{pmatrix} \qquad \qquad \frac{dg_{\kappa}(r)}{dr} + \frac{\kappa+1}{r}g_{\kappa}(r) - (E+m-V(r))f_{\kappa}(r) = 0 \\ \frac{df_{\kappa}(r)}{dr} - \frac{\kappa-1}{r}f_{\kappa}(r) + (E-m-V(r))g_{\kappa}(r) = 0$$

$${}^{V/A}M_{KLS}^{(N)}(k_e, m, n, \rho) = \frac{1}{\hat{J}_i} \sum_{\pi, \nu} {}^{V/A}m_{KLS}^{(N)}(\pi, \nu)(k_e, m, n, \rho) \times \text{OBTD}(\Psi_f, \Psi_i, \pi, \nu, K)$$

$${}^{V}m_{KLS}^{(N)}(k_{e},m,n,\rho) = \langle \phi_{\kappa_{\pi}\mu} \parallel \left(\frac{r}{R}\right)^{L+2N} \mathcal{I}(k_{e},m,n,\rho,r)T_{KLS} \parallel \phi_{\kappa_{\nu}\mu} \rangle$$
$${}^{A}m_{KLS}^{(N)}(k_{e},m,n,\rho) = \langle \phi_{\kappa_{\pi}\mu} \parallel \left(\frac{r}{R}\right)^{L+2N} \mathcal{I}(k_{e},m,n,\rho,r)\gamma_{5}T_{KLS} \parallel \phi_{\kappa_{\nu}\mu} \rangle$$

$$T_{KLS}^{M} = \begin{cases} Y_{LM} \delta_{KL} & S = 0\\ (-1)^{L-K+1} \gamma_5 [Y_L \otimes \sigma]_{KM} & S = 1 \end{cases}$$

Non-relativistic ME

$$\phi_{nljm} = \begin{pmatrix} G_{nljm}(r) \\ F_{nljm}(r) \end{pmatrix} \qquad \qquad \frac{dg_{\kappa}(r)}{dr} + \frac{\kappa+1}{r}g_{\kappa}(r) - (E+m-V(r))f_{\kappa}(r) = 0 \\ \frac{df_{\kappa}(r)}{dr} - \frac{\kappa-1}{r}f_{\kappa}(r) + (E-m-V(r))g_{\kappa}(r) = 0$$

$${}^{V}m_{KK0}^{(N)}(\pi,\nu)(k_{e},m,n,\rho) = \sqrt{2}g_{V} \left[G_{KK0}(\kappa_{\pi},\kappa_{\nu}) \int_{0}^{\infty} g_{\pi}(r,\kappa_{p}) \left(\frac{r}{R}\right)^{K+2N} \mathcal{I}(k_{e},m,n,\rho,r)g_{\nu}(r,\kappa_{\nu})r^{2}dr + G_{KK0}(-\kappa_{\pi},-\kappa_{\nu}) \int_{0}^{\infty} f_{\pi}(r,\kappa_{\pi}) \left(\frac{r}{R}\right)^{K+2N} \mathcal{I}(k_{e},m,n,\rho,r)f_{\nu}(r,\kappa_{\nu})r^{2}dr \right]$$

$${}^{A}m_{KL1}^{(N)}(\pi,\nu)(k_{e},m,n,\rho) = \operatorname{sign}(K-L+\frac{1}{2})\sqrt{2}g_{A} \left[G_{KK0}(\kappa_{\pi},\kappa_{\nu}) \int_{0}^{\infty} g_{\pi}(r,\kappa_{\pi}) \left(\frac{r}{R}\right)^{L+2N} \mathcal{I}(k_{e},m,n,\rho,r)g_{\nu}(r,\kappa_{\nu})r^{2}dr + G_{KK0}(-\kappa_{\pi},-\kappa_{\nu}) \int_{0}^{\infty} f_{i_{p}}(r,\kappa_{p}) \left(\frac{r}{R}\right)^{L+2N} \mathcal{I}(k_{e},m,n,\rho,r)f_{\nu}(r,\kappa_{\nu})r^{2}dr \right].$$

$$(28)$$

Relativistic ME

$$\phi_{nljm} = \begin{pmatrix} G_{nljm}(r) \\ F_{nljm}(r) \end{pmatrix} \qquad \qquad \frac{dg_{\kappa}(r)}{dr} + \frac{\kappa+1}{r}g_{\kappa}(r) - (E+m-V(r))f_{\kappa}(r) = 0 \\ \frac{df_{\kappa}(r)}{dr} - \frac{\kappa-1}{r}f_{\kappa}(r) + (E-m-V(r))g_{\kappa}(r) = 0$$

$${}^{V}m_{KL1}^{(N)}(\pi,\nu)(k_{e},m,n,\rho) = \operatorname{sign}(K-L+\frac{1}{2})\sqrt{2}g_{V}\left[G_{KL1}(\kappa_{\pi},-\kappa_{\nu})\int_{0}^{\infty}g_{\pi}(r,\kappa_{\pi})\left(\frac{r}{R}\right)^{L+2N}\mathcal{I}(k_{e},m,n,\rho,r)f_{\nu}(r,\kappa_{\nu})r^{2}dr\right] -G_{KK0}(-\kappa_{\pi},\kappa_{\nu})\int_{0}^{\infty}f_{\pi}(r,\kappa_{\pi})\left(\frac{r}{R}\right)^{L+2N}\mathcal{I}(k_{e},m,n,\rho,r)g_{\nu}(r,\kappa_{\nu})r^{2}dr\right]$$

$${}^{A}m_{KK0}^{(N)}(\pi,\nu)(k_{e},m,n,\rho) = \sqrt{2}g_{A}\left[G_{KK0}(\kappa_{\pi},-\kappa_{\nu})\int_{0}^{\infty}g_{\pi}(r,\kappa_{\pi})\left(\frac{r}{R}\right)^{K+2N}\mathcal{I}(k_{e},m,n,\rho,r)f_{\nu}(r,\kappa_{\nu})r^{2}dr\right] -G_{KK0}(-\kappa_{\pi},\kappa_{\nu})\int_{0}^{\infty}f_{\pi}(r,\kappa_{\pi})\left(\frac{r}{R}\right)^{K+2N}\mathcal{I}(k_{e},m,n,\rho,r)g_{\nu}(r,\kappa_{\nu})r^{2}dr\right].$$

$$(30)$$

Treatment of relativistic ME within a non-relativistic framework

1) In then non-relativistic limit the small and large component are connected

Treatment of relativistic ME within a non-relativistic framework

1) In then non-relativistic limit the small and large component are connected

$$\begin{aligned} \frac{dg_{\kappa}(r)}{dr} + \frac{\kappa + 1}{r}g_{\kappa}(r) - (E + M - V(r))f_{\kappa}(r) &= 0, \\ \frac{df_{\kappa}(r)}{dr} - \frac{\kappa - 1}{r}f_{\kappa}(r) + (E - M - V(r))g_{\kappa}(r) &= 0 \\ & T(E-M) << 2M \text{ and } V(r) << 2M \end{aligned}$$

$$f_{\kappa}(r) &= \frac{1}{2M_{N}} \left(\frac{d}{dr} + \frac{\kappa + 1}{r}\right)g_{\kappa}(r) \qquad \left(\frac{d^{2}}{dr^{2}} + \frac{2}{r}\frac{d}{dr} - \frac{\kappa(\kappa + 1)}{r^{2}} + 2M_{N}[T - V(r)]\right)g_{\kappa}(r) = 0. \end{aligned}$$

2) Resort to CVC relations

$$\begin{split} &-\sqrt{L(2L+1)}^{V}F_{LL-11} + \frac{(qR)^{2}}{2L+3}\sqrt{\frac{L+1}{2L+1}}^{V}F_{LL+11} - W_{0}R^{V}F_{LL0} = RC_{L}.\\ & VF_{211} = -\frac{1}{\sqrt{10}}RE_{\gamma} \ ^{V}F_{220}, \quad ^{V}F_{431} = -\frac{1}{\sqrt{36}}RE_{\gamma} \ ^{V}F_{440} \end{split}$$
Hucl. Phys. A 162, 111 (1971).

H. Behrens and W. Bu hring, Nucl. Phys. A 162, 111 (1971).

RME within CVC

TABLE III. ⁹⁹Tc, ¹¹³Cd, and ¹¹⁵In β decay relativistic form factors determined with and without recurring to the CVC relations, and the non-relativistic form factors connected with the relativistic ones by CVC. The values are in adimensional units.

⁹⁹ Tc	Bare	Effective
$^{V}F_{211}$	0.000	0.008
$^{V}F_{211}^{CVC}$	-0.030	-0.017
$^{V}F_{220}$	0.286	0.161
¹¹³ Cd	Bare	Effective
$^{V}F_{431}$	0.0003	-0.008
$^{V}F_{431}^{CVC}$	0.032	0.015
$^{V}F_{440}$	-0.521	-0.237
¹¹⁵ In	Bare	Effective
$^{V}F_{431}$	-0.0004	-0.009
$^{V}F_{431}^{CVC}$	0.031	0.017
$^{V}F_{440}$	-0.473	-0.267

Presentation title