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Electromagnetic dipole response of a nucleus 

D. Budker et al. https://onlinelibrary.wiley.com/doi/full/10.1002/andp.202100284

✓ Pygmy E1 strengths → Provides information about 
neutron skin and symmetry energy in EOS →
𝑅elevant for modelling of neutron stars.

✓ Impact the gamma strength functions, reaction rates 
and r-process nucleosynthesis in the stellar 
environment.

p n
✓ Give information on the fundamental 

properties of nuclei.

✓ Provide insight into the behaviour of 
nuclear matter under extreme 
conditions.

Astrophysical Interest



Electromagnetic dipole response of a nucleus 

✓ Nuclei exist at high temperatures in stellar environments.

✓ Experimental studies are available on GDR at finite temperature 
mainly using fusion-evaporation reaction forming hot and rotating 
compound nucleus (CN). 

✓ No experiments so far have searched the PDR mode at finite 
temperature.



O. Wieland et al., IL NUOVO CIMENTO 47 C (2024) 24

T=1.6 MeV

Result on search of Hot Pygmy in 62Ni

✓ Some evidence of a possible extra strength is observed in 
neutron-rich nucleus.

✓ Appears not in N=Z nucleus but (only) in N=Z+xn nucleus at high 
excitation energy (CN temperature up to ≈2 MeV).

✓ Located below GDR and with Strength around 2-4% of total GDR-
EWSR.

✓ Not from deformation (angular momentum) effects.
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temperature.

Recent Experimental Work in Progress in Ni isotopes

O. Wieland, Comex7; (https://agenda.infn.it/event/21964)
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Electromagnetic transitions are sensitive towards the extreme conditions of 
➢ Temperature
➢ Isospin 



Relativistic nuclear energy density functional (RNEDF)

The point-coupling RNEDF determined from the Lagrangian density
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❑ Free nucleon terms 

❑ Isoscalar-scalar, isoscalar-vector, 
isovector-vector interaction terms

❑ Derivative term (effects of finite 
range interaction)

❑ Electromagnetic interaction

𝐸𝑅𝑀𝐹 = න 𝑑3𝑟ℋ(𝑟)

➢ By integrating the Hamiltonian density over the r-space we obtain the total energy

𝑛𝑖 = 𝑣𝑖
2 1 − 𝑓𝑖 + 𝑢𝑖

2𝑓𝑖
𝑓𝑖 = [1 + exp(𝐸𝑖/𝑘𝐵𝑇)]−1

➢ The T-dependent Fermi-Dirac distribution 
       function is obtained as

➢ At finite temperature (FT), the occupation probabilities of 
      single particle states are given by

[T. Nikšić et al., Comput. Phys. Commun. 185, 1808 (2014)]
[DD-PCX: E. Yüksel et al., Phys. Rev. C 99, 034318 (2019)]

[A. L. Goodman, Nucl. Phys. A 352, 30 (1981)]

➢ Nuclear state properties are described within finite temperature Hartree-Bardeen-Cooper-Schrieffer (FT-HBCS) 
framework supplemented with pairing correlations (Separable Pairing force)

➢ Collective excitations in Nuclei: Relativistic Quasiparticle Random Phase Approximation (RQRPA)

HBCS+RQRPA are prominent tools for calculations. 
Finite temperature calculations needs extra work!



➢ The starting point in the Equation of Motion method is definition of a suitable Excitation operator

• H. Sommermann, Ann. of Phys. 151, 163 (1983)
• E. Yüksel et al., Phys. Rev. C 96, 024303 (2017)
• A. Kaur, E. Yüksel, N. Paar, Phys. Rev. C  109, 014314 (2024)
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➢ With ۧ|𝐵𝐶𝑆  as the approximate thermal vacuum the equation of motion can be written as
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two-quasiparticle creation/destruction and one-quasiparticle creation/destruction 
operators.
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➢ The FT-RQRPA equations are derived as

Finite temperature RQRPA



Finite temperature RQRPA

➢ The reduced transition probability is
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➢ The FT-RQRPA equations can be combined into a single matrix
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  In the limit T → 0
FT-RQRPA → RQRPA

Red terms contribute at T>0
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A. Kaur, E. Yüksel, N. Paar, Phys. Rev. C 109, 014314 (2024)

Isovector E1 response at finite temperature

Calculations are performed using DD-PCX interaction

➢ Low-energy excited states begin to 
emerge, as neutron number of Ca 
isotopes increases.

At T=0  MeV

At finite temperature

➢ Giant dipole resonance (GDR) region 
exhibits only minor changes up to T=2 
MeV.
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Low-energy region

E<12 MeV

➢ New low-energy excited states start to 
emerge below E<5 MeV.

➢  At T=2 MeV, Its influence become more 
pronounced in the low-energy region of 
neutron-rich nuclei.

➢ Thermal unblocking effects → open new 
excitation channels 

➢ These newly formed states at low 
energies are created through single 
quasiparticle transitions and do not 
exhibit collectively. 

Isovector E1 response at finite temperature

A. Kaur, E. Yüksel, N. Paar, Phys. Rev. C 109, 014314 (2024)
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Mass Number A

𝛼𝐷 =
8𝜋𝑒2

9
𝑚−1(𝐸1)

➢ αD is highly sensitive to the density 
dependence of the symmetry energy and is 
directly proportional to the inverse energy-
weighted E1 sum rule m−1. 

➢ In addition to the increase with
the neutron excess, for all isotopes, the dipole 
polarizability systematically increases with 
temperature.

A. Kaur, E. Yüksel, N. Paar, Phys. Rev. C 109, 014314 (2024)

Dipole Polarizability αD at finite temperature



M1 response at finite temperature

ො𝜇𝜈
𝑀1,𝐼𝑉 =

3

4𝜋
𝜇𝑁 ෍

𝑘𝜖𝐴

𝑔𝑠
𝐼𝑉 Ƹ𝑠𝜈 𝑘 + 𝑔𝑙

𝐼𝑉 መ𝑙𝜈 𝑘 Ƹ𝜏0(𝑘)

✓ M1 excitation at the leading one-body operator would take place between the spin-orbit partner orbits.

Spin-orbit (SO) gap energies (ΔELS)

✓ Thus,  it  can provide important information on the underlying SO splittings.

✓ Gap between SO partners decreases with 
an enhancement in T especially above Tc.

✓ Because the pairing force reduces rapidly 
with increase in temperature and 
collapses above Tc. 

✓ This reduction in SO gap energies above 
Tc will significantly modify the M1 
response.

A. Kaur, E. Yüksel, and N. Paar, Phys. Rev. C 109, 024305 (2024)

G. Kružic, T. Oishi, D. Vale, and N. Paar,  Phys. Rev. C 102, 044315 (2020). 

Nuclear spin and orbital g factors for the IV-M1 mode are
𝑔𝑠  =  4.706 and 𝑔𝑙  =  0.5
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Isovector M1 response at T=0 MeV

➢ For 44-56Ca nuclei, there is a strong peak in each 
isotope that attributes to the M1 excitation of valence 
neutron transitions ν(1f7/2 → 1f5/2 ).

N=20

➢ The M1 response does not appear when the SO-partner 
orbits are both occupied or empty.

➢ M1 transitions are not present for protons due to shell 
closure for Z=20. 

➢ For 40Ca and 60Ca, the nucleon numbers 20 and 40 are 
the “M1-silence” points.

ν(2p3/2 → 2p1/2 )

Z=20

N=24

N=28

N=32

N=36

N=40

Fully 
Occupied

Fully 
Occupied

A. Kaur, E. Yüksel, and N. Paar, Phys. Rev. C 109, 024305 (2024)



M1 response at finite temperature

✓  At T=0.5 MeV, the M1 strength does not change 
much.

        At T=1 & 2 MeV
✓ Due to thermal unblocking of forbidden 

transitions between (1d5/2→1d3/2) and 
(1f7/2→1f5/2) ,  M1 strength appears for 40Ca and 
60Ca nuclei.

✓ Low-energy region E<5 MeV:
       New smaller peak arises for neutron-rich nuclei                
       as a result of major ν(2p3/2→2p1/2 )  transition.

✓ M1 transitions are considerably sensitive to   
changes  in temperature.

A. Kaur, E. Yüksel, and N. Paar, Phys. Rev. C 109, 024305 (2024)
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▪ M1 response shifts to lower energies for 44,48,52,56Ca 
nuclei with increasing temperature.

A. Kaur, E. Yüksel, and N. Paar, Phys. Rev. C 109, 024305 (2024)

Weakening of pairing!

✓ Weakening and disappearance of pairing correlations
✓ Weakening of the residual interaction
✓ Decrement in SO splitting



A self-consistent finite temperature relativistic QRPA (FT-RQRPA) framework is 
developed to study the finite temperature effects on E1 and M1 transitions.

➢New excitation channels open due to thermal unblocking effects in the low and high 
energy region; especially in neutron-rich nuclei.

➢The GDR region of E1 response is slightly modified for the considered range of 
temperature; however, the M1 response exhibits a considerable dependence on 
temperature. 

➢Temperature and pairing effects play a significant role below critical temperature Tc.

Summary

Future perspectives: Possible contributions of E1 and M1 transitions at finite temperature in  
γ strength functions. 
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