Gamow-Teller excitations and beta-decay within the Subtracted Second RPA

Danilo Gambacurta
gambacurta@lns.infn.it
INFN-LNS Catania

The 10th International Conference on Quarks and Nuclear Physics
QNP2024: 08–12 July 2024 Facultat de Biologia, Universitat de Barcelona
Outline

Theoretical models:

- The Random Phase Approximation (RPA) and Second RPA (SRPA)
- SRPA Difficulties within EDF framework
- Improving on the SRPA: the Subtracted SRPA (SSRPA)

Applications

- Test case: RPA, SRPA and SSRPA in Quadrupole response of 16O
- Gamow Teller Excitations
- Beta-decay half-life results

Main References

- D. G., M. Grasso, and J. Engel Phys. Rev. Lett. 125, 212501, 2020
- D. G. and M. Grasso, Phys. Rev. C 105, 014321, 2022
- D. G. and M. Grasso, in preparation

Danilo Gambacurta gambacurta@lns.infn.it INFN-LNS Catania
Theoretical models:

- The Random Phase Approximation (RPA) and Second RPA (SRPA)
- SRPA Difficulties within EDF framework
- Improving on the SRPA: the Subtracted SRPA (SSRPA)

Applications

- Test case: RPA, SRPA and SSRPA in Quadrupole response of 16O
- Gamow Teller Excitations
- Beta-decay half-life results

Main References

- D. G., M. Grasso, and J. Engel Phys. Rev. Lett. 125, 212501, 2020
- D. G. and M. Grasso, Phys. Rev. C 105, 014321, 2022
- D. G. and M. Grasso, in preparation
Microscopic description of Nuclear Excitations (NEs)

The Random Phase Approximation (RPA)

- The RPA is a widely used tool for the description of collective excitations
- Very successful especially within the Energy Density Functional framework (interactions à la Skyrme or Gogny, covariant versions)
- It provides global properties: centroid energies and total strength

However, extensions of the RPA are required for:

- Strength Fragmentation
- Fine Structure
- Spreading Width
- ...

The Second RPA (SRPA): more general excitation operators are introduced
Phonon Operators: RPA vs SRPA

Random Phase Approximation (RPA)

\[Q_{\nu}^\dagger = \sum_{ph} X_{ph}^{(\nu)} a_p a_h - \sum_{ph} Y_{ph}^{(\nu)} a_h a_p \]

Only Landau Damping, Centroid Energy and Total Strength of GRs

Second Random Phase Approximation (SRPA)

\[Q_{\nu}^\dagger = \sum_{ph} (X_{ph}^{(\nu)} a_p a_h - Y_{ph}^{(\nu)} a_h a_p) \]

\[+ \sum_{p_1 < p_2, h_1 < h_2} (X_{p_1 h_1 p_2 h_2}^{(\nu)} a_{p_1}^\dagger a_{h_1} a_{p_2}^\dagger a_{h_2} - Y_{p_1 h_1 p_2 h_2}^{(\nu)} a_{h_1}^\dagger a_{p_1} a_{h_2}^\dagger a_{p_2}) \]

Spreading Width, Fragmentation, Double GRs and Anharmonicites, Low-Lying States
RPA Excitation Operators and Equations

RPA Phonon Operators

\[Q_\nu^\dagger = \sum_{ph} X_{ph}^{(\nu)} a_p a_h - \sum_{ph} Y_{ph}^{(\nu)} a_h a_p \]

RPA Equations of Motion (1\(\rightarrow \) 1p1h)

\[
\begin{pmatrix}
A_{11} & B_{11} \\
-B_{11}^* & -A_{11}^*
\end{pmatrix}
\begin{pmatrix}
X_1^{\nu} \\
Y_1^{\nu}
\end{pmatrix}
= \omega_\nu
\begin{pmatrix}
X_1^{\nu} \\
Y_1^{\nu}
\end{pmatrix}
\]
SRPA Excitation Operators and Equations

SRPA Phonon Operators

\[Q_{\nu}^\dagger = \sum_{ph} (X_{ph}^{(\nu)} a_p a_h - Y_{ph}^{(\nu)} a_h a_p) \]

\[+ \sum_{p_1 < p_2, h_1 < h_2} (X_{p_1 h_1 p_2 h_2}^{(\nu)} a_{p_1} a_{h_1} a_{p_2} a_{h_2} - Y_{p_1 h_1 p_2 h_2}^{(\nu)} a_{h_1} a_{p_1} a_{h_2} a_{p_2}) \]

SRPA Equations of Motion (1\(\rightarrow\)1p1h, 2\(\rightarrow\)2p2h)

\[
\begin{pmatrix}
A_{11} & A_{12} & B_{11} & B_{12} \\
A_{21} & A_{22} & B_{21} & B_{22} \\
-B_{11}^* & -B_{12}^* & -A_{11}^* & -A_{12}^* \\
-B_{21}^* & -B_{22}^* & -A_{21}^* & -A_{22}^*
\end{pmatrix}
\begin{pmatrix}
X_1^{\nu} \\
X_2^{\nu} \\
Y_1^{\nu} \\
Y_2^{\nu}
\end{pmatrix}
= \omega_\nu
\begin{pmatrix}
X_1^{\nu} \\
X_2^{\nu} \\
Y_1^{\nu} \\
Y_2^{\nu}
\end{pmatrix}
\]
SRPA Excitation Operators and Equations

SRPA Phonon Operators

\[Q_{\nu}^\dagger = \sum_{p h} (X_{ph}^{(\nu)} a_p^\dagger a_h - Y_{ph}^{(\nu)} a_h^\dagger a_p) \]

\[+ \sum_{p_1 < p_2, h_1 < h_2} (X_{p_1 h_1 p_2 h_2}^{(\nu)} a_{p_1}^\dagger a_{h_1} a_{p_2}^\dagger a_{h_2} - Y_{p_1 h_1 p_2 h_2}^{(\nu)} a_{h_1}^\dagger a_{p_1} a_{h_2}^\dagger a_{p_2}) \]

SRPA Equations of Motion (1\(\rightarrow \) 1p1h, 2\(\rightarrow \) 2p2h)

\[
\begin{pmatrix}
A_{11} & A_{12} & B_{11} & B_{12} \\
A_{21} & A_{22} & B_{21} & B_{22} \\
-B_{11}^* & -B_{12}^* & -A_{11}^* & -A_{12}^* \\
-B_{21}^* & -B_{22}^* & -A_{21}^* & -A_{22}^*
\end{pmatrix}
\begin{pmatrix}
X_{\nu 1}^\nu \\
X_{\nu 2}^\nu \\
Y_{\nu 1}^\nu \\
Y_{\nu 2}^\nu
\end{pmatrix} = \omega_{\nu}
\begin{pmatrix}
X_{\nu 1}^\nu \\
X_{\nu 2}^\nu \\
Y_{\nu 1}^\nu \\
Y_{\nu 2}^\nu
\end{pmatrix}
\]

Computationally very demanding

- The (few) applications performed in the past were done by using strong approximations and (very) small model spaces
- Only recently full large scale SRPA calculations have been performed
Large scale SRPA calculations have shown that:

- The SRPA strength distribution is systematically shifted towards lower energies compared to the RPA one
- This shift is very strong ($\sim 3-4 \text{ MeV}$), RPA description often spoiled

Origins and Causes:
1. Quasi Boson Approximation and stability problems in SRPA
2. Use of effective interactions in beyond-mean field methods

- Designed for beyond RPA approaches
- It restores the Thouless theorem, e.g. instabilities are removed
- Static ($\omega = 0$) limit of the SRPA imposed to be equal to the RPA one
The Subtraction procedure

From SRPA to an Energy dependent RPA-like problem

- The SRPA problem as an energy-dependent RPA problem

\[A_{1,1'} \rightarrow \tilde{A}_{1,1'}(\omega) = A_{1,1'}^{RPA} + \sum_{2,2'} A_{1,2}(\omega + i\eta - A_{2,2'})^{-1} A_{2',1'} = A_{1,1'}^{RPA} + A_{1,1'}^{Cor}(\omega) \]
The Subtraction procedure

From SRPA to an Energy dependent RPA-like problem

- The SRPA problem as an energy-dependent RPA problem

\[A_{1,1'} \rightarrow \tilde{A}_{1,1'}(\omega) = A_{1,1'}^{RPA} + \sum_{2,2'} A_{1,2}(\omega + i\eta - A_{2,2'})^{-1} A_{2',1}' = A_{1,1'}^{RPA} + A_{1,1'}^{Cor}(\omega) \]

The Subtraction procedure is SRPA (SSRPA)

- Subtraction of the zero–frequency limit of the SRPA correction

\[A_{1,1'}^{Cor} \rightarrow \tilde{A}_{1,1'}^{Cor}(\omega) = A_{1,1'}(\omega) - A_{1,1'}(\omega = 0) \Rightarrow \]

\[\tilde{A}_{1,1'}(\omega = 0) = A_{1,1'}^{RPA} \]

\[\Rightarrow \Pi^{SSRPA}(\omega = 0) = \Pi^{RPA} \]
The Subtraction procedure

From SRPA to an Energy dependent RPA-like problem

- The SRPA problem as an energy-dependent RPA problem

\[A_{1,1'} \rightarrow \tilde{A}_{1,1'}(\omega) = A_{1,1'}^{RPA} + \sum_{2,2'} A_{1,2}(\omega + i\eta - A_{2,2'})^{-1} A_{2',1'} = A_{1,1'}^{RPA} + A_{1,1'}^{Cor}(\omega) \]

The Subtraction procedure is SRPA (SSRPA)

- Subtraction of the zero–frequency limit of the SRPA correction

\[A_{1,1'}^{Cor} \rightarrow \tilde{A}_{1,1'}^{Cor}(\omega) = A_{1,1'}(\omega) - A_{1,1'}(\omega = 0) \Rightarrow \]

\[\tilde{A}_{1,1'}(\omega = 0) = A_{1,1'}^{RPA} \]

\[\Rightarrow \Pi^{SSRPA}(\omega = 0) = \Pi^{RPA} \]

Numerical implementation

- Subtraction performed in diagonal approximation, e.g. \(A_{2,2'} \approx \delta_{2,2'} A_{2,2} \)
- Full subtraction recently performed (GT strength) \(^a\)

\(^a\)DG, M. Grasso, J. Engel, Physical Review Letters 125, 212501 (2020)
Quadrupole Strength Distribution in 16O: RPA, SRPA and SSRPA

Quadrupole Strength Distribution in 16O: RPA, SRPA and SSRPA

Recent extension to the charge exchange (CE) case

Second RPA for CE excitations

- Extension of the SSRPA for the description of **CE excitations**
- First applications to ^{48}Ca (lightest double-β emitter) and ^{78}Ni in Ref [1]
- More applications (^{14}C, ^{22}O, ^{90}Zr and ^{132}Sn) in Ref [2]

More details in:

The quenching problem

- Computed GT matrix elements are larger than the experimental ones.
- The problem is “cured” by quenching the strength by $q \sim 0.7$ or using effective axial constant $g_A (\sim 1)$ instead of the “bare” value ~ 1.27.

Shell Model calculations

The quenching problem

- Computed GT matrix elements are larger than the experimental ones.
- The problem is “cured” by quenching the strength by $q \sim 0.7$ or using effective axial constant $g_A (\sim 1)$ instead of the “bare” value ~ 1.27.

Skyrme-RPA calculations

$q^f = \frac{\sum_{E_x=0}^{E_x=\text{max}} B(GT : E_x)_{\text{expt}}}{\sum_{E_x=0}^{E_x=\text{max}} B(GT)_{\text{calc}}}$

Li-Gang Cao, Shi-Sheng Zhang, and H. Sagawa, PHYSICAL REVIEW C 100, 054324 (2019)
The quenching problem

- Computed GT matrix elements are larger than the experimental ones.
- The problem is “cured” by quenching the strength by $q \sim 0.7$ or using effective axial constant $g_A (\sim 1)$ instead of the “bare” value ~ 1.27.

Possible causes fall in two main classes:

- **Nuclear many-body correlations not included in the calculations:**
 (truncation of the model space, short-range correlations, multi-phonon states, multi particle-hole excitations, ...)

- **Non-nucleonic degrees of freedom:**
 (Many-nucleon weak currents, Δ-isobar excitations, in-medium modification of pion physics, ...)

Danilo Gambacurta gambacurta@lns.infn.it INFN-LNS Catania
(a) GT^- strength in RPA and SSRPA compared with (GT^- plus IVSM) data.
(b) Cumulative strengths up to 20 MeV.
(a) GT\(^-\) strength in RPA and SSRPA compared with (GT\(^-\) plus IVSM) data.
(b) Cumulative strengths up to 20 MeV.
GT$^-$ strength distribution for 48Ca, SGII interaction

(a) GT$^-$ strength in RPA and SSRPA compared with (GT$^-$ plus IVSM) data.
(b) Cumulative strengths up to 20 MeV.
GT$^-$ Strength Distribution 48Ca, SGII interaction

(a), (b), (c) Strengths integrated up to 20 MeV with different parameterizations.

(d) RPA and SSRPA percentages of the Ikeda sum rule below 30 MeV compared with the experimental one.

Numerical complexity: different approximations schemes

Numerical complexity

- The most demanding task is related to the treatment of the $A_{22'}$ matrix.
- The number of 2p-2h configurations can be very large: $\sim 10^7, 10^8$.
- We need to calculate the “full” spectrum.
- Most demanding tasks:
 - a) subtraction procedure, $A_{22'}$ inversion.
 - b) diagonalization of the SSRPA eigenvalue problem.
- Strong simplification if $A_{22'}$ is assumed to be diagonal.

Different calculation scheme:

1. SSRPADD: $A_{22'}$ is Diagonal both in a) and b).
2. SSRPADF: $A_{22'}$ is Diagonal both in a) and Full in b).
3. SSRPAFF: $A_{22'}$ is Full both in a) and in b).
Comparison between SSRPADD, SSRPADF and SSRPAFF results.

Comparison between SSRPAFF and SSRPADF results.

GT$^-$ Strength Distribution 90Zr and 132Sn, interaction dependence

For 90Zr:
- **Exp**
- **RPA**
- **SSRPA**

For 132Sn:
- **Exp**
- **RPA**
- **SSRPA**

Other sources of quenching may be needed...
GT$^-$ Strength Distribution 90Zr and 132Sn, interaction dependence

Other sources of queenching may be needed ...
Beta-decay Half-life

\[T_{1/2} = \frac{D}{g_A^2 \int Q \frac{S(E)}{dE}} \]

\[f(Z, \omega) = \int_{m_e c^2}^{\omega} p_e E_e (\omega - E_e)^2 F_0(Z + 1, E_e) dE_e, \]

Fermi function of the emitted electron

Gamow-Teller transition

\[\Delta S = 1 \quad \Delta L = 0 \quad \Delta T = 1 \]

operator

\[\hat{O}_{GT}^- = \sum_{i=1}^{A} \tilde{\sigma}(i) \cdot \tau_-(i) \]

Transition probability

\[B(GT^-) = \sum_i |\langle \nu | \hat{O} | 0 \rangle|^2 \]
Beta-decay Half-life

\[T_{1/2} = \frac{D}{g_A^2 \int_{Q^0} S(E) f(Z, \omega) dE} \]

\[f(Z, \omega) = \int_{m_e c^2}^{\omega} p_e E_e (\omega - E_e)^2 F_0(Z + 1, E_e) dE_e, \]

Fermi function of the emitted electron

Gamow-Teller transition
\[\Delta S=1 \; \Delta L=0 \; \Delta T=1 \]
operator

\[\hat{\mathcal{O}}_{GT^-} = \sum_{i=1}^{A} \bar{\sigma}(i) \cdot \tau_-(i) \]

Transition probability

\[B(GT^-) = \sum \left| \langle \nu | \hat{\mathcal{O}} | 0 \rangle \right|^2 \]

\[Q_0 \text{ value} = M_e (\text{atomic}) - M_e (\text{atomic}) \]

\[\beta \text{ decay window} \]

Giant resonance

\[\text{Excitation energy in daughter nucleus } E^* \]
GT− Strength Distribution and β-decay half-life 78Ni

(a) Cumulative sum for the nucleus 78Ni within the SSRPA, PVC and RTBA models; (b) β-decay half-life for 78Ni. No quenching, bare $g_\alpha = 1.27$; Data from: P. T. Hosmer et al. Phys. Rev. Lett. 94, 112501 (2005) PVC: Y. F. Niu, G. Coló and E. Vigezzi, Phys. Rev. C 90, 054328 (2014) RTBA:C. Robin and E. Litvinova, Phys. Rev. C 98, 051301(R), 2018

Particle-Vibration Coupling Effect on the β Decay of Magic Nuclei

Y. F. Niu (牛一斐), Z. M. Niu (牛中明), G. Colò, and E. Vigezzi

$^{132}\text{Sn, }^{68,78}\text{Ni, }^{34}\text{Si, }^{78}\text{Ni}$
Effects of two-particle–two-hole configurations and tensor force on β decay of magic nuclei

M. J. Yang, H. Sagawa, C. L. Bai, and H. Q. Zhang

PHYSICAL REVIEW C 107, 014325 (2023)
β decay half-lives: SSRPA preliminary results

From D. Gambacurta and M. Grasso, in preparation

Danilo Gambacurta gambacurta@lns.infn.it INFN-LNS Catania
Effect of J^2 terms

SGII interaction

SLy5 interaction
Conclusions and Outlook

Conclusions
- The SRPA: richer and more general description of excited states
- The Subtracted SRPA: more reliable results within the EDF framework
- GT strength and β-decay half-life, considerable improvement with respect to the RPA

Outlook
- Extension to superfluid case, Second quasi-particle RPA
- Neutrino-less Double Beta Decay studies
Conclusions and Outlook

Conclusions

- The SRPA: richer and more general description of excited states
- The Subtracted SRPA: more reliable results within the EDF framework
- GT strength and β-decay half-life, considerable improvement with respect to the RPA

Outlook

- Extension to superfluid case, Second quasi-particle RPA
- Neutrino-less Double Beta Decay studies
- Hibrid PVC plus SRPA calculations
Thanks For Your Attention !!!
Backup Slides
GT$^{-}$ Strength Distribution 48Ca, sum rules in the two channels

Danilo Gambacurta gambacurta@lns.infn.it INFN-LNS Catania
GT− Strength Distribution for the nuclei ^{22}O (blue) and ^{14}C (green): SSRPA versus \textit{ab initio} Coupled Cluster including two-body currents [1].

The blue and green horizontal areas represent the reduction of the total Ikeda sum rule $S_{GT-} - S_{GT+}$ from \textit{ab initio} results [1]. The blue and green vertical intervals correspond to a reduction of (70-80 %) of the sum rule exhausted at 10 MeV.

See also Gysbers \textit{et al.} Nature Phys. 15 428 (2019)

Ratios of the moments of the isoscalar quadrupole strength distribution in ^{16}O