Gamow-Teller excitations and beta-decay within the Subtracted Second RPA

Danilo Gambacurta gambacurta@Ins.infn.it INFN-LNS Catania

The 10th International Conference on Quarks and Nuclear Physics QNP2024: 08–12 July 2024 Facultat de Biologia, Universitat de Barcelona

Outline

Theoretical models:

- The Random Phase Approximation (RPA) and Second RPA (SRPA)
- SRPA Difficulties within EDF framework
- Improving on the SRPA: the Subtracted SRPA (SSRPA)

Applications

• Test case: RPA, SRPA and SSRPA in Quadrupole response of ¹⁶O

.⊒...>

- Gamow Teller Excitations
- Beta-decay half-life results

Outline

Theoretical models:

- The Random Phase Approximation (RPA) and Second RPA (SRPA)
- SRPA Difficulties within EDF framework
- Improving on the SRPA: the Subtracted SRPA (SSRPA)

Applications

- Test case: RPA, SRPA and SSRPA in Quadrupole response of ¹⁶O
- Gamow Teller Excitations
- Beta-decay half-life results

Main References

- D. G., M. Grasso, and J. Engel Phys. Rev. Lett. 125, 212501, 2020
- D. G. and M. Grasso, Phys. Rev. C 105, 014321, 2022
- D. G. and M. Grasso, in preparation

The Random Phase Approximation (RPA)

- The RPA is a widely used tool for the description of collective excitations
- Very successful especially within the Energy Density Functional framework (interactions á la Skyrme or Gogny, covariant versions)
- It provides global properties: centroid energies and total strength

However, extensions of the RPA are required for:

- Strength Fragmentation
- Fine Structure
- Spreading Width
- ...

The Second RPA (SRPA): more general excitation operators are introduced

Image: A Image: A

Phonon Operators: RPA vs SRPA

Random Phase Approximation (RPA)

Only Landau Damping, Centroid Energy and Total Strength of GRs

Second Random Phase Approximation (SRPA)

$$Q^{\dagger}_{
u} = \sum_{ph} (X^{(
u)}_{ph}a^{\dagger}_{p}a_{h} - Y^{(
u)}_{ph}a^{\dagger}_{h}a_{p})$$

+
$$\sum_{\substack{p_1 < p_2, h_1 < h_2}} (X_{p_1h_1p_2h_2}^{(\nu)}, \underbrace{a_{p_1}^{\dagger}a_{h_1}a_{p_2}^{\dagger}a_{h_2}}_{2p-2h} - Y_{p_1h_1p_2h_2}^{(\nu)}, \underbrace{a_{h_1}^{\dagger}a_{p_1}a_{h_2}^{\dagger}a_{p_2}}_{2h-2p})_{2h-2p}$$

Spreading Width, Fragmentation, Double GRs and Anharmonicites, Low-Lying States

э.

イロト イ押ト イヨト イヨト

RPA Phonon Operators

$$\mathcal{Q}^{\dagger}_{
u} = \sum_{ph} X^{(
u)}_{ph} a^{\dagger}_{p} a_{h} - \sum_{ph} Y^{(
u)}_{ph} a^{\dagger}_{h} a_{p}$$

RPA Equations of Motion $(1 \mapsto 1p1h)$

$$\begin{pmatrix} \mathcal{A}_{11} & \mathcal{B}_{11} \\ -\mathcal{B}_{11}^* & -\mathcal{A}_{11}^* \end{pmatrix} \begin{pmatrix} \mathcal{X}_1^{\nu} \\ \mathcal{Y}_1^{\nu} \end{pmatrix} = \omega_{\nu} \begin{pmatrix} \mathcal{X}_1^{\nu} \\ \mathcal{Y}_1^{\nu} \end{pmatrix}$$

≣ ▶

SRPA Excitation Operators and Equations

SRPA Phonon Operators

$$Q^{\dagger}_{
u} = \sum_{ph} (X^{(
u)}_{ph} a^{\dagger}_{p} a_{h} - Y^{(
u)}_{ph} a^{\dagger}_{h} a_{p})$$

$$+\sum_{p_1< p_2, h_1 < h_2} (X^{(\nu)}_{\rho_1 h_1 \rho_2 h_2} a^{\dagger}_{\rho_1} a_{h_1} a^{\dagger}_{\rho_2} a_{h_2} - Y^{(\nu)}_{\rho_1 h_1 \rho_2 h_2} a^{\dagger}_{h_1} a_{\rho_1} a^{\dagger}_{h_2} a_{\rho_2})$$

SRPA Equations of Motion $(1 \mapsto 1p1h, 2 \mapsto \overline{2p2h})$

$$\begin{pmatrix} \mathcal{A}_{11} & \mathcal{A}_{12} & \mathcal{B}_{11} & \mathcal{B}_{12} \\ \mathcal{A}_{21} & \mathcal{A}_{22} & \mathcal{B}_{21} & \mathcal{B}_{22} \\ -\mathcal{B}_{11}^* & -\mathcal{B}_{12}^* & -\mathcal{A}_{11}^* & -\mathcal{A}_{12}^* \\ -\mathcal{B}_{21}^* & -\mathcal{B}_{22}^* & -\mathcal{A}_{21}^* & -\mathcal{A}_{22}^* \end{pmatrix} \begin{pmatrix} \mathcal{X}_1^{\nu} \\ \mathcal{X}_2^{\nu} \\ \mathcal{Y}_1^{\nu} \\ \mathcal{Y}_2^{\nu} \end{pmatrix} = \omega_{\nu} \begin{pmatrix} \mathcal{X}_1^{\nu} \\ \mathcal{X}_2^{\nu} \\ \mathcal{Y}_1^{\nu} \\ \mathcal{Y}_2^{\nu} \end{pmatrix}$$

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ▲ 臣 ● のへの

SRPA Excitation Operators and Equations

SRPA Phonon Operators

$$Q^{\dagger}_{
u} = \sum_{ph} (X^{(
u)}_{ph} a^{\dagger}_{p} a_{h} - Y^{(
u)}_{ph} a^{\dagger}_{h} a_{p})$$

$$+\sum_{p_1< p_2, h_1 < h_2} (X^{(\nu)}_{\rho_1 h_1 \rho_2 h_2} a^{\dagger}_{\rho_1} a_{h_1} a^{\dagger}_{\rho_2} a_{h_2} - Y^{(\nu)}_{\rho_1 h_1 \rho_2 h_2} a^{\dagger}_{h_1} a_{\rho_1} a^{\dagger}_{h_2} a_{\rho_2})$$

SRPA Equations of Motion $(1 \mapsto 1p1h, 2 \mapsto 2p2h)$

$$\begin{pmatrix} \mathcal{A}_{11} & \mathcal{A}_{12} & \mathcal{B}_{11} & \mathcal{B}_{12} \\ \mathcal{A}_{21} & \mathcal{A}_{22} & \mathcal{B}_{21} & \mathcal{B}_{22} \\ -\mathcal{B}_{11}^* & -\mathcal{B}_{12}^* & -\mathcal{A}_{11}^* & -\mathcal{A}_{12}^* \\ -\mathcal{B}_{21}^* & -\mathcal{B}_{22}^* & -\mathcal{A}_{21}^* & -\mathcal{A}_{22}^* \end{pmatrix} \begin{pmatrix} \mathcal{X}_1^{\nu} \\ \mathcal{X}_2^{\nu} \\ \mathcal{Y}_1^{\nu} \\ \mathcal{Y}_2^{\nu} \end{pmatrix} = \omega_{\nu} \begin{pmatrix} \mathcal{X}_1^{\nu} \\ \mathcal{X}_2^{\nu} \\ \mathcal{Y}_1^{\nu} \\ \mathcal{Y}_2^{\nu} \end{pmatrix}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Computationally very demanding

- The (few) applications performed in the past were done by using strong approximations and (very) small model spaces
- Only recently full large scale SRPA calculations have been performed

Large scale SRPA calculations have shown that:

- The SRPA strength distribution is sistematically shifted towards lower energies compared to the RPA one
- ullet This shift is very strong (\simeq 3-4 MeV), RPA description often spoiled

Origins and Causes:

- **Quasi Boson Approximation and stability problems in SRPA**
- **2** Use of effective interactions in beyond-mean field methods

The Subtraction procedure (I. Tselyaev Phys. Rev. C 75, 024306 (2007))

- Designed for beyond RPA approaches
- It restores the Thouless theorem, e.g. instabilities are removed
- Static ($\omega = 0$) limit of the SRPA imposed to be equal to the RPA one

From SRPA to an Energy dependent RPA-like problem

• The SRPA problem as an energy-dependent RPA problem

$$A_{1,1'} \mapsto \tilde{A}_{1,1'}(\omega) = A_{1,1'}^{RPA} + \sum_{2,2'} A_{1,2}(\omega + i\eta - A_{2,2'})^{-1} A_{2',1'} = A_{1,1'}^{RPA} + A_{1,1'}^{Cor}(\omega)$$

The Subtraction procedure

From SRPA to an Energy dependent RPA-like problem

• The SRPA problem as an energy-dependent RPA problem

$$A_{1,1'} \mapsto \tilde{A}_{1,1'}(\omega) = A_{1,1'}^{RPA} + \sum_{2,2'} A_{1,2}(\omega + i\eta - A_{2,2'})^{-1} A_{2',1'} = A_{1,1'}^{RPA} + A_{1,1'}^{Cor}(\omega)$$

The Subtraction procedure is SRPA (SSRPA)

• Subtraction of the zero-frequency limit of the SRPA correction

$$\begin{split} A_{1,1'}^{Cor} &\mapsto \tilde{A}_{1,1'}^{Cor}(\omega) = A_{1,1'}(\omega) - A_{1,1'}(\omega = 0) \Rightarrow \\ \tilde{A}_{1,1'}(\omega = 0) &= A_{1,1'}^{RPA} \\ &\Rightarrow \varPi^{SSRPA}(\omega = 0) = \varPi^{RPA} \end{split}$$

The Subtraction procedure

From SRPA to an Energy dependent RPA-like problem

• The SRPA problem as an energy-dependent RPA problem

$$A_{1,1'} \mapsto \tilde{A}_{1,1'}(\omega) = A_{1,1'}^{RPA} + \sum_{2,2'} A_{1,2}(\omega + i\eta - A_{2,2'})^{-1} A_{2',1'} = A_{1,1'}^{RPA} + A_{1,1'}^{Cor}(\omega)$$

The Subtraction procedure is SRPA (SSRPA)

• Subtraction of the zero-frequency limit of the SRPA correction

$$\begin{split} A_{1,1'}^{Cor} &\mapsto \tilde{A}_{1,1'}^{Cor}(\omega) = A_{1,1'}(\omega) - A_{1,1'}(\omega = 0) \Rightarrow \\ \tilde{A}_{1,1'}(\omega = 0) = A_{1,1'}^{RPA} \\ &\Rightarrow \varPi^{SSRPA}(\omega = 0) = \varPi^{RPA} \end{split}$$

Numerical implementation

- Subtraction performed in diagonal approximation, e.g. $A_{2,2'} \approx \delta_{2,2'} A_{2,2}$
- Full subtraction recently performed (GT strength) ^a

^aDG, M. Grasso, J. Engel, Physical Review Letters 125, 212501 (2020)

Danilo Gambacurta gambacurta@Ins.infn.it INFN-LNS Catania

D. G., M. Grasso and J.Engel, Phys. Rev. C 92, 034303 (2015)

Second RPA for CE excitations

- Extension of the SSRPA for the description of CE excitations
- First applications to 48 Ca (lightest double- β emitter) and 78 Ni in Ref [1]
- More applications (¹⁴C, ²²O, ⁹⁰Zr and ¹³²Sn) in Ref [2]

More details in:

D.Gambacurta, M. Grasso, J. Engel, Phys. Rev. Lett. 125, 212501 (2020)
 D.Gambacurta and M. Grasso, Phys. Rev. C 105, 014321, (2022)

The quenching problem

- Computed GT matrix elements are larger than the experimental ones.
- The problem is "cured" by **quenching** the strength by $q \sim 0.7$ or using effective axial constant $g_A (\sim 1)$ instead of the "bare" value ~ 1.27 .

The quenching problem

- Computed GT matrix elements are larger than the experimental ones.
- The problem is "cured" by **quenching** the strength by $q \sim 0.7$ or using effective axial constant $g_A (\sim 1)$ instead of the "bare" value ~ 1.27 .

Li-Gang Cao , Shi-Sheng Zhang, and H. Sagawa, PHYSICAL REVIEW C 100, 054324 (2019)

Skyrme-RPA calculations

The quenching problem

- Computed GT matrix elements are larger than the experimental ones.
- The problem is "cured" by **quenching** the strength by $q \sim 0.7$ or using effective axial constant $g_A (\sim 1)$ instead of the "bare" value ~ 1.27 .

Possible causes fall in two main classes:

• Nuclear many-body correlations not included in the calculations: (truncation of the model space, short-range correlations, multi-phonon states, multi particle-hole excitations, ...)

▲ 臣 ▶ | ▲ 臣 ▶

Non-nucleonic degrees of freedom: (Many-nucleon weak currents, Δ-isobar excitations, in-medium modification of pion physics, ...)

(a) GT⁻ strength in RPA and SSRPA compared with (GT⁻ plus IVSM) data.
(b) Cumulative strengths up to 20 MeV.
Data from: K. Yako *et al.*, Phys. Rev. Lett. 103, 012503 (2009)
From D.Gambacurta, M. Grasso, J. Engel, Phys. Rev. Lett. 125, 212501 (2020)

(a) GT⁻ strength in RPA and SSRPA compared with (GT⁻ plus IVSM) data.
(b) Cumulative strengths up to 20 MeV.
Data from: K. Yako *et al.*, Phys. Rev. Lett. 103, 012503 (2009)
From D.Gambacurta, M. Grasso, J. Engel, Phys. Rev. Lett. 125, 212501 (2020)

(a) GT⁻ strength in RPA and SSRPA compared with (GT⁻ plus IVSM) data.
(b) Cumulative strengths up to 20 MeV.
Data from: K. Yako *et al.*, Phys. Rev. Lett. 103, 012503 (2009)
From D.Gambacurta, M. Grasso, J. Engel, Phys. Rev. Lett. 125, 212501 (2020)

GT⁻ Strength Distribution ⁴⁸Ca

(a), (b), (c) Strengths integrated up to 20 MeV with different parameterizations.

(d) RPA and SSRPA percentages of the Ikeda sum rule below 30 MeV compared with the experimental one.

From D.Gambacurta, M. Grasso, J. Engel, Phys. Rev. Lett. 125, 212501 (2020)

< ∃ >

э

Numerical complexity

• The most demanding task is related to the treatment of the $A_{22'}$ matrix

▲ 国 ▶ ▲ 国 ▶ …

- The number of 2p-2h configurations can be very large $\simeq 10^7, 10^8$
- We need to calculate the "full" spectrum
- Most demanding tasks:
 - a) subtraction procedure, $A_{22'}$ inversion
 - b) diagonalization of the SSRPA eigenvalue problem
- Strong simplification if $A_{22'}$ is assumed to be diagonal

Different calculation scheme:

- **()** SSRPADD: $A_{22'}$ is Diagonal both in a) and b)
- **2** SSRPADF: $A_{22'}$ is Diagonal both in a) and Full in b)
- SSRPAFF: $A_{22'}$ is Full both in a) and in b)

Comparison between SSRPADD, SSRPADF and SSRPAFF results .

From D.Gambacurta and M. Grasso, Phys. Rev. C 105, 014321, (2022)

GT⁻ Strength Distribution ⁹⁰Zr SSRPA results

Comparison between SSRPADF and SSRPAFF results .

From D.Gambacurta and M. Grasso, Phys. Rev. C 105, 014321, (2022)

∢ ≣ ≯

æ

ж

Other sources of queenching may be needed ...

Beta-decay Half-life

$$T_{1/2} = \frac{D}{g_A^2 \int^{\mathcal{Q}_\beta} S(E) f(Z, \omega) dE}$$

$$f(Z,\omega) = \int_{m_e c^2}^{\omega} p_e E_e(\omega - E_e)^2 F_0(Z+1, E_e) dE_e,$$

Fermi function of the emitted electron

$$\label{eq:Gamow-Teller transition} \begin{split} & \textbf{Gamow-Teller transition} \\ & \textbf{\Delta S=1 } \textbf{\Delta L=0 } \textbf{\Delta T=1} \\ & \textbf{operator} \\ & \hat{\partial}_{\text{GT}^-} = \sum_{i=1}^{A} \vec{\sigma}(i) \cdot \tau_{-}(i) \\ & \textbf{Transition probability} \end{split}$$

$$B(\mathrm{GT}^{-}) = \sum |\langle \nu | \hat{O} | 0 \rangle|^2$$

→ < ∃→

Beta-decay Half-life

$$T_{1/2} = \frac{D}{g_A^2 \int^{Q_\beta} S(E) f(Z, \omega) dE}.$$

$$f(Z,\omega) = \int_{m_e c^2}^{\omega} p_e E_e(\omega - E_e)^2 F_0(Z+1, E_e) dE_e,$$

Fermi function of the emitted electron

Gamow-Teller transition $\Delta S=1 \Delta L=0 \Delta T=1$ operator $\hat{O}_{GT^-} = \sum_{i=1}^{A} \vec{\sigma}(i) \cdot \tau_{-}(i)$

Transition probability

$$B(\mathrm{GT}^{-}) = \sum |\langle \nu | \hat{O} | 0 \rangle|^2$$

≣ ▶

(a) Cumulative sum for the nucleus ⁷⁸Ni within the SSRPA, PVC and RTBA models; (b) β -decay half-life for ⁷⁸Ni. **No quenching, bare** $g_a = 1.27$; Data from: P. T. Hosmer *et al.* Phys. Rev. Lett. 94, 112501 (2005) PVC: Y. F. Niu, G. Coló and E. Vigezzi, Phys. Rev. C 90, 054328 (2014) RTBA:C. Robin and E. Litvinova, Phys. Rev. C 98, 051301(R), 2018

From D.Gambacurta, M. Grasso, J. Engel, Phys. Rev. Lett. 125, 212501 (2020)

< P

æ

Particle-Vibration Coupling Effect on the β Decay of Magic Nuclei

PHYSICAL REVIEW C 107, 014325 (2023)

Effects of two-particle-two-hole configurations and tensor force on β decay of magic nuclei

イロト イ押ト イヨト イヨト

æ

M. J. Yang,¹ H. Sagawa,^{2,3} C. L. Bai⁰,¹ and H. Q. Zhang⁴

From D.Gambacurta and M. Grasso, in preparation

.⊒...>

SGII interaction

SLy5 interaction

・ロン ・聞と ・ 聞と ・ 聞と

æ

Conclusions

- The SRPA: richer and more general description of excited states
- The Subtracted SRPA:more reliable results within the EDF framework
- $\bullet\,$ GT strength and $\beta\text{-decay}$ half-life, considerable improvement with respect to the RPA

Outlook

- Extension to superfluid case, Second quasi-particle RPA
- Neutrino-less Double Beta Decay studies

Conclusions

- The SRPA: richer and more general description of excited states
- The Subtracted SRPA:more reliable results within the EDF framework
- $\bullet\,$ GT strength and $\beta\text{-decay}$ half-life, considerable improvement with respect to the RPA

Outlook

- Extension to superfluid case, Second quasi-particle RPA
- Neutrino-less Double Beta Decay studies
- Hibrid PVC plus SRPA calculations

Thanks For Your Attention !!!

< ∃⇒

э.

Danilo Gambacurta gambacurta@Ins.infn.it INFN-LNS Catania

Backup Slides

< ∃⇒

문 🕨 🗄 문

GT⁻ Strength Distribution for the nuclei ²²O (blue) and ¹⁴C (green): SSRPA versus *ab initio* Coupled Cluster including two-body currents [1].

The blue and green horizontal areas represent the reduction of the total lkeda sum rule $S_{GT^-} - S_{GT^+}$ from *ab initio* results [1].

The blue and green vertical intervals correspond to a reduction of (70-80 %) of the sum rule exhausted at 10 MeV.

[1] A. Ekstrom *et al.* Phys. Rev. Lett. 113, 262504 (2014) See also Gysbers et al. Nature Phys. 15 428 (2019)

From D.Gambacurta and M. Grasso, Phys. Rev. C 105, 014321, (2022)

ヘロト 人間 とくほとう ほとう

э

Ratios of the moments of the isoscalar quadrupole strength distribution in ${}^{16}O$

э