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Introduction r process and nuclear masses Conclusions

The r process B2FH, Rev. Mod. Phys. 29, 547 (1957) ; A. Cameron, Report CRL-41 (1957)
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• The path to heavier nuclei goes through neutron-rich nuclei.
• Astrophysical site with high neutron fluxes → transient object (e.g., neutron star mergers).
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Nuclear masses
Modelling the r process requires the knowledge of nuclear masses, neutron capture rates and β-decay
rates, fission yields and rates. . .

M. R. Mumpower et al., PPNP 86 (2016)
J. J. Mendoza-Temis et al., PRC 92 (2015)

M. R. Mumpower et al., PPNP 86 (2016)• Nuclear masses are an essential ingredient:
i) energy budget of n captures, β decays and

fission;
ii) location of the r-process path;
iii) accumulation of material.

• Far from stability: large spread in the predicted
nuclear masses.

• The predicted abundances and kilonova light curve
suffer from large uncertainties.

What are the most relevant nuclear mass differences for the r-process abundances?
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Nuclear masses - Global and local contributions

Binding energies can be decomposed into two contributions:

E = Ebulk + Eshell

Ebulk: homogeneous, bulk part. Determines the global properties, depends smoothly on A. It can be
described using the liquid drop model (LDM):

ELDM

A = avol + asurA−1/3 + acurA−2/3

+ asymI 2 + assymA−1/3I 2 + a(2)
symI 4

+ aCoulZ 2A−4/3 + apaiδ

Eshell: shell effects, producing local changes in mass surfaces and Sn .

This talk: r-process abundances are insensitive to global changes in masses.
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Nuclear masses - Global and local changes
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Starting from the DZ31 and FRDM models, we construct two new mass tables by mixing their bulk
and the quantum shell parts:

E(DZ31*) = EFRDM
bulk + EDZ31

shell

E(FRDM*) = EDZ31
bulk + EFRDM

shell
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Masses and r process ∼2000 NSM trajectories from Collins et al., MNRAS 101093 (2023)
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Abundances insensitive to global changes in masses (e.g., symmetry energy).
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Nuclear masses - Global and local changes
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Abundance mostly related to local changes on S2n (rather than bulk properties of masses) →
∆2n(N , Z) = S2n(N , Z) − S2n(N + 2, Z).
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Nuclear masses - Global and local changes
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Nuclear masses - Global and local changes ∼2000 NSM trajectories from Collins et al., MNRAS 101093 (2023)
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Nuclear masses - Global and local changes ∼2000 NSM trajectories from Collins et al., MNRAS 101093 (2023)
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Nuclear masses - Global and local changes
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Conclusions
• Understanding the cosmic origin of heavy elements produced by the r-process requires a detailed

knowledge of nuclear properties of neutron rich nuclei, being nuclear masses an essential ingredient.
• By separating the bulk behaviour from the quantum shell-correction contribution in different mass

tables, we studied the impact of local and global changes in mass surfaces on the r-process.
• We find that global changes on masses have little effect on final r-process abundances, which are

mostly determined by shell effects producing local changes in Sn . All discrepancies are equal, but
some are more equal than others.
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• This result allows to better quantify the more impactful changes on nuclear masses, providing further
guidance to future experiments.
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