Spectroscopic study of Kaonic nuclei using inclusive and exclusive $^{12}C(K^-,p)$ reaction at J-PARC

Fumiya OURA

(Tohoku University, Japan)

for the J-PARC E42 collaboration

QNP2024
Barcelona, Spain,
July 8th-12th, 2024

Outline

- ${}^{\scriptscriptstyle \square}$ $\overline{K}N$ interaction and \overline{K} -nucleon bound system
- □ Kaonic nucleus search via inclusive $^{12}C(K^-,p)$ reaction
 - Result: optical potential
 - Result: event excess
- New attempt of exclusive search with TPC at J-PARC (E42 experiment)
 - Experimental setup
 - Basic analysis
 - Result: missing mass resolution of $p(K^-, p)$ reaction
 - Result: inclusive spectrum of $^{12}C(K^-, p)$ reaction
 - Result: exclusive spectrum with request for tracks in TPC
- Summary

Introduction

F.Oura, QNP2024, July10th2024

[1] T. Hyodo, D. Jido

- $\overline{K}N$ (I=0) attractive interaction results in $\Lambda^*(1405)$? [1]
- $\overline{K}NN$ state search (J-PARC E15) [2]
 - □ Clear bump structure in invariant mass via 3 He(K^- , Λp)n
 - Lightest kaonic nucleus
 - $B_K = 42 \pm 3 \, ^{+3}_{-4} \, \text{MeV} \, / \, \Gamma = 100 \pm 7 \, ^{+19}_{-9} \, \text{MeV}$
 - □ Due to $\overline{K}N$ and Λ^*N attraction?

|T| [1/MeV]

0.4

[2] T. Yamaga *et al.* Phys. Rev. C 102, 044002 (2020)

1420

Kaonic nucleus search via inclusive $^{12}C(K^-,p)$ reaction (J-PARC E05)

- $^{-12}C(K^-,p)$ binding energy
 - $B_K = -MissingMass + Mass^{11}B + MassKaon$
 - $^{\square}$ Optical potential between K^{-} and the core nucleus

PTEP **2020**, 123D01(2020)

[3] Y. Ichikawa et al.,

$$(V_0, W_0) = (-80, -40)$$
 [MeV] [3] (V_0, W_0) : real/imaginary part)

Kaonic nucleus search via inclusive $^{12}C(K^-,p)$ reaction (J-PARC E05)

¹ Event excess in a deeper energy region of ${}^{12}C(K^-,p)$ binding energy

□ Come from a Y^* bound state? (BW fit: B_K : 90MeV, $\Gamma = 100$ MeV)

[3] Y. Ichikawa et al., PTEP **2020**, 123D01(2020)

Kaonic nucleus search via exclusive $^{12}C(K^-,p)$ reaction (J-PARC E42)

7

J-PARC E42 experiment

- J-PARC (Japan Proton Accelerator Research Complex) high energy and high intensity proton beam is available
- Hadron hall
 We can use a variety of secondary beams such as kaon, pion, and so on.

J-PARC E42 experiment

- Hadron hall
 - We can use a variety of secondary beams such as kaon, pion, and so on.
- K1.8 beamline

High-intensity ($\sim 10^7$ Hz) and high-momentum (-1.8 GeV/c) Kaon beam is available

J-PARC E42 experiment

- Invariant mass spectroscopy of H-dibaryon using HypTPC (J-PARC E42)
 Completed in 2021
 - -1.8 GeV/c Kaon beam on a diamond target

HypTPC

- GEM-based time projection chamber
- □ ~5700 GEM pads are used
- Observables : Momentum, TOF, Energy deposit
- Large acceptance (~4π) (target installed in TPC)
- High-rate capability (~10⁶Hz)
- □ High resolution (~1 MeV in σ)

Kaonic nucleus search measuring $^{12}C(K^-,p)$ and decay particles

- We can search \overline{K} nucleus via the same ${}^{12}\mathrm{C}(K^-,p)$ reaction as E05(inclusive)
- Possible to measure decay particles Λp using Time-Projection chamber, HypTPC
- Possible to observe a clear bump structure with good S/N ratio

Measurement of $^{12}C(K^-,p)$ missing mass with Λp coincidence

July10th2024 13

Analysis of KURAMA spectrometer for the forward scattered particles

14

Analysis of Hyperon Spectrometer (HypTPC) for decay particles

Missing mass of $p(K^-, p)$ reaction

- Fitted with gaussian + quadratic
- $^{\Box}$ Resolution of elastic kaon: 34.4 MeV (σ)
- ¹ From this value, we can estimate resolution for B_K of $^{12}C(K^-,p)$ around 0 MeV to be 22 MeV (σ)

16

ⁿ Binding energy of $^{12}C(K^-,p)$ of E05data (scaled) and E42 data

E05 data smeared with E42 resolution (22 MeV in σ)

Exclusice spectrum of $^{12}C(K^-,p)$ with request for TPC tracking

- Binding Energy
 - Beam Kaon and Scattered proton are requested
 - $0^{\circ} < \theta^{kp} < 10^{\circ}$
- TPCTrack = trackTotal trackBeam
 - trackKurama trackAccidental

Exclusice spectrum of $^{12}C(K^-,p)$ with request for TPC tracking

Binding Energy

- Beam Kaon and Scattered proton are requested
- $0^{\circ} < \theta^{kp} < 10^{\circ}$

In bound region, 2 or 3 tracks can be seen more than others. For further discuss, it's necessary to require PID or momentum.

Summary

- ${}^{\Box}$ $\overline{K}N$ interaction and $\overline{K}N$ bound system are still unclear
- □ Inclusive spectroscopy via ${}^{12}C(K^-, p)$ (E05 experiment)
 - Determined optical potential between K^- and the core nucleus
 - Observed event excess in deeper region of binding energy
- Exclusive spectroscopy via ${}^{12}C(K^-,p)$ using HypTPC (E42 experiment)
 - Was completed in 2021
 - Can access event excess measuring decay particle with HypTPC
 - Analysis is ongoing
 - Energy resolution of B_K was ~20 MeV estimated by $p(K^-, p)$
 - Comparison of B_K between this experiment and past experiment
 - Exclusive spectrum with request for multiplicity of tracks in TPC
 - Further analysis like decay particle identification and momentum measurement is ongoing.

Backup slides

F.Oura, QNP2024, July10th2024

$\overline{K}NN$ Search via ${}^{3}\text{He}(K^{-},\Lambda p)n$ (J-PARC E15)

- Clear bump structure was observed.
 - Lightest Kaonic nucleus
 - $^{\Box} B_K = 42 \pm 3 ^{+3}_{-4} \text{ MeV } (B_K = m_K + A \cdot M_N M_{KA})$
 - $^{\Box}$ Decay width $\Gamma_K = 100 \pm 7 ^{+19}_{-9}$ MeV

T. Yamaga *et al.* (J-PARC E15 Collaboration) Phys. Rev. C **102**, 044002 (2020)

Suggestion of Existence of KNNN, KNNNN, ...

- $\Box \overline{K}NN$ was found also in FINUDA experiment
 - Back-to-back Λp pair
 - Invariant mass is much lower than Λp
- $\ \ \overline{K}NNN, \overline{K}NNNN$ were also found
 - Back-to-back Λd and Λt pairs
 - $^{-}$ Smaller binding energy than that of $\overline{K}NN$
- Theoretical suggestion
 - $\neg \overline{K}NNN, \overline{K}NNNN, \overline{K}NNNNNN$ [1]
 - Heavier states like $^{256}\text{Pb} + K^-$ have large B_K but large $\Gamma_K[2]$

[1] S. Ohnishi, W. Horiuchi, T. Hoshino, K. Miyahara, and T. Hyodo, Phys. Rev. C **95**, 065202

[2] J. Hrtánková and J. Mareš, Phys. Rev. C **96**, 015205

M. Agnello *et al.* (FINUDA Collaboration) Phys. Rev. Lett. **94**, 212303

M. Agnello *et al.* (FINUDA Collaboration) Eur. Phys. J. A 33, 283–286 (2007)

Search for H-dibaryon

- H-dibaryon: exotic hadron, six quark state of uuddss (I=0, J=0)
- Bound or resonance? Mass close to $\Lambda \Lambda$ or ΞN threshold?
 - Very meaningful because this state is deeply related to $\Lambda \Lambda \Sigma \Sigma \Xi N$ coupling channel
 - Lattice QCD calculation \rightarrow near ΞN threshold
- History of H-dibaryon search

KEK-PS E522

statistics & resolution not enough

C. J. Yoon *et al.* Phys. Rev. C **75**, 022201(2007)

Search for H-dibaryon

- H-dibaryon: exotic hadron, six quark state of uuddss (I=0, J=0)
- □ Bound or resonance? Mass close to $\Lambda \Lambda$ or ΞN threshold?
 - Very meaningful because this state is deeply related to $\Lambda \Lambda \Sigma \Sigma \Xi N$ coupling channel
 - Lattice QCD calculation \rightarrow near ΞN threshold
- History of H-dibaryon search

$\Lambda\Lambda$ reconstruction

3000 $\Lambda\Lambda$ events are reconstructed (not full data)

Summary of past experiments

	KEK E224 KEK E522		
Beam K ⁻	$p_{K^-} = 1.65 \text{ GeV/c}$	p_(K ⁻) = 1.66 GeV/c	
p_(K+) [GeV/c]	0.95 <p_(k+) <1.3<="" td=""><td colspan="2">0.9<p_(k+) <1.3<="" td=""></p_(k+)></td></p_(k+)>	0.9 <p_(k+) <1.3<="" td=""></p_(k+)>	
$d\sigma/d\Omega(\Lambda\Lambda)$	7.6 µb/sr	12.8 µb/sr	
∧∧ yield	35 events	68 events	

Comparison with expected yield

p_(K ⁺) [GeV/c]	0.95 <p_(k<sup>+) <1.3</p_(k<sup>		0.5 < p_(K ⁺)
Assumed dσ/d Ω (ΛΛ)	7.6 µb/sr	12.8 µb/sr	
Expected $\Lambda\Lambda$	337 events	570 events	
Expected $\Lambda\Lambda$ yield	520 events	880 events	
Measured ΛΛ yield	1,390 events		3,030 events

More than expected! We will open H-dibaryon box soon!

HypTPC enables investigation in many other topics

- We are currently working on the following topics using E42 data;
 - 1. Kaonic nucleus search via exclusive ${}^{12}C(K^-,p)$ reaction
 - 2. Measurement of Ξ -nucleus optical potential via ${}^{12}C(K^-,K^+)$
 - 3. Polarization measurement of Ξ and $\Xi^*(1535)$ via $p(K^-, K^+)\Xi/\Xi^*$
 - 4. Study of ChSB effect by measurement of $K^*(892)$ vector mass via ${}^{12}C(K^-,p)$

Hopefully, there may be many other byproducts!

33

Measurement of Ξ^- -nucleus optical potential via $^{12}C(K^-,K^+)$

• Many experiments have been studying Ξ^- -nucleus interaction but its imaginary part havs not been well determined yet. Difficult to determine from the inclusive measurement.

BNL E885

¹²C(K⁻, K⁺) inclusive spectrum

 $\rightarrow V_0^{\Xi} \sim -14$ MeV by neglecting W_0^{Ξ}

P. Khaustov et al., PRC 61, 054603 (2000)

J-PARC E05/E70

¹²C(K⁻, K⁺) inclusive spectrum with wide B_≡ range is taken.

Y. Ichikawa *et al.*, PTEP, to be published

Best resolution 2 MeV will be achieved in E70

T. Gogami *et al.*, EPJ Web Conf. 271, 1102 (2022).

Measurement of Ξ^- -nucleus optical potential via $^{12}C(K^-,K^+)$

- E42 experiment can investigate
 - Ξ^- escape or $\Xi^-p \to \Lambda\Lambda$ conversion spectra
 - → Sensitive to the imaginary part of the potential!

12C(K-, K+) inclusive spectrum

QFE

Inclusive spectrum

Inclusive spectrum

Region (MeV/c²)

≣- escape spectrum

Ξ·p→ΛΛ conversion spectrum

HypTPC

Polarization measurement of Ξ and $\Xi^*(1535)$ via $p(K^-, K^+)\Xi/\Xi^*$

- ⁹ Some "bump" structures in forward region of $p(K^-, K^+)\Xi^-$ with existing data [4]
- ⁻ Accounted for by significant contribution from s-channel Λ(2100, 7/2-) and Σ (2300, 7/2+) [5]
- Polarization study is required to investigate the spin structure
- □ E42 can approach cosθ>0.83 region.
 - Decay amplitude → angular distribution
 - □ Angular distribution → polarization

[5] S.H., Kim *et al*. Phys. Rev. C **107**. 065202(2023)

Study of ChSB effect by measuring $K^*(892)$ vector mass via $^{12}C(K^-,p)$

- Chiral symmetry is believed to be partially restored in nuclear medium
- $^{\square}$ $K^*(892)$ are suitable for studying possible in-medium modification of mass because of smaller width of the mass than other meson candidates
- [□] HypTPC can observe $K^*(892)$ by reconstructing $K_S^0 \to \pi^+\pi^-$ and finally $K^*(892) \to K_S^0\pi^-$

