Low-energy K+N scattering revisited and in-medium strange quark condensate

Daisuke JIDO
Department of Physics,
Tokyo Institute of Technology

Reference: lizawa, DJ, Hübsch, PTEP 2024, 053D0I (2024)
10th International Conference on Quarks and Nuclear Physics
Facultat de Biologia, Universitat de Barcelona 2024.7.8-12

Introduction

- revisit low energy KN scattering amplitude with $\mathrm{S}=+1$
- kaon is one of Nambu-Goldstone bosons
- chiral perturbation theory describe KN amplitude in low energies
low energy effective theory of QCD
works for low energy hadron scattering unless resonances are present such as πN below $\Delta, \pi \pi$ below $f_{0}(500)$ and ρ
KN ($\mathrm{S}=+1$) : no strong resonances nor no coupled channels
- in-medium quark condensate relates to KN amplitude in soft limit πN sigma term determines slope of reduction of quark condensate ChPT gives analytic function and allows us to take soft limit $\mathrm{K}+\mathrm{N}$ scattering amplitude reveals in-medium strange quark condensate

Correlation function approach to evaluate in-medium quark condensate

in-medium strange quark condensate

- correlation function approach:
we consider a correlation function for K^{+}channel in nuclear medium.
K^{+}channel is relatively simpler than K^{-}channel due to no resonances

$$
\Pi_{5}(q ; \rho)=\mathrm{F} . \mathrm{T} . \partial^{\mu}\langle\Omega| \mathrm{T}\left[A_{\mu}(x) P^{\dagger}(0)|\Omega\rangle, \quad\right. \text { nuclear matrix element }
$$

$K^{+}(\bar{s} u)$ channel: axial vector current $A_{\mu}=\frac{1}{\sqrt{2}} \bar{s} \gamma_{\mu} \gamma_{5} u$,

$$
\text { pseudoscalar filed } P=\sqrt{2} \bar{s} i \gamma_{5} u
$$

chiral Ward identity tells us

$$
\Pi_{5}(0 ; \rho)=-i\langle\Omega| \bar{u} u+\bar{s} s|\Omega\rangle
$$

in soft limit where four momentum $q \rightarrow 0$,
thanks to chiral algebra $\left[Q_{5}, P\right]=-i(\bar{u} u+\bar{s} s), Q_{5}=\int A_{0} d^{3} x$

in-medium strange quark condensate

- chiral Ward identity:

$$
\Pi_{5}(0 ; \rho)=-i\langle\Omega| \bar{u} u+\bar{s} s|\Omega\rangle \text { in soft limit }
$$

- correlation function can be also evaluated at low density expansion as $\langle\Omega| \bar{J}(x) J(0)|\Omega\rangle=\langle 0| \bar{J}(x) J(0)|0\rangle+\rho\langle N| \bar{J}(x) J(0)|N\rangle+O\left(\rho^{n>1}\right)$ \rightarrow in-vacuum condensate $\rightarrow T_{K N}$ using SVZ reduction formula
- linear density approximation, in-medium change of quark condensate

$$
\frac{\langle\bar{u} u+\bar{s} s\rangle^{*}}{\langle\bar{u} u+\bar{s} s\rangle_{0}}=\left(1+\frac{\rho}{M_{K}^{2}} \frac{T_{K N}(q=0)}{2 M_{N}}\right),
$$

given by KN scattering amplitude in (unphysical) soft limit

- because analytic continuation to soft limit is necessary we use ChPT amplitude
D. Jído

K^{+}nucleon elastic scattering revisited in chiral perturbation theory

KN scattering in ChPT

- KN elastic scattering in chiral perturbation theory

LO + NLO + (a part of) NNLO with $\mathrm{m}_{\mathrm{s}}+$ Coulomb correction for $\mathrm{K}^{+} \mathrm{p}$
12 low-energy constants (LECs), that are model parameters to be fitted

Weinberg-Tomozawa u-channel Born

NLO

- experimental data up to $\mathrm{Plab}^{2}=800 \mathrm{MeV} / \mathrm{c}$, where inelastic contribution are significant
$K^{+} p$ elastic differential cross section (Plab $=145$ to $726 \mathrm{MeV} / \mathrm{c}$)
$K^{+} n \rightarrow K^{0} p$ (charge exchange) diff. cross section (Plab $=434$ to $780 \mathrm{MeV} / \mathrm{c}$)
I=1 total cross section (Plab $=145$ to $788 \mathrm{MeV} / \mathrm{c}$)
$\mathrm{I}=0$ total cross section (Plab $=413$ to $794 \mathrm{MeV} / \mathrm{c}$, Plab $=366$ to $714 \mathrm{MeV} / \mathrm{c}$)
(we do not use $K^{+} n$ elastic scattering data due to large ambiguities)

KN scattering in ChPT

- chi square fitting for 12 parameters (LECs)

$$
\chi_{\text {d.o.f }}^{2}=\frac{1}{\mathcal{N}_{\text {d.o.f }}} \sum_{i}^{n}\left(\frac{y_{i}-f\left(x_{i}\right)}{\sigma_{i}}\right)^{2}
$$

- two remarks for fitting

1) choice of data of $I=0$ total cross sections

We use two data (CARROLL 73, BOWEN 70) separately \rightarrow FIT 1,2

| \AA D D. Jido

KN scattering in ChPT

2) resonance contribution
a previous work found a wide resonance in $S=+1$ and $I=0$ using chiral unitary approach with BOWEN 70 for $I=0$ total cross section two possible candidates: either P_{01} or P_{03} resonance

	channel	$M[\mathrm{MeV}]$	$\Gamma[\mathrm{MeV}]$	$\mathrm{g}\left[\mathrm{GeV}^{-1}\right]$
solution 1	$\mathrm{P}_{01}\left(1 / 2^{+}\right)$	1617	305	$5.26-2.62 \mathrm{i}$
solution 2	$\mathrm{P}_{03}\left(3 / 2^{+}\right)$	1678	463	$4.46-2.62 \mathrm{i}$

because chiral perturbation theory cannot generate resonances,
we account resonance contribution by adding $T_{\text {pole }}=\frac{k^{2} g^{2}}{W-M+i \Gamma / 2}$
to the $\mathrm{I}=0$ amplitude \rightarrow FIT 3, 4

KN scattering in ChPT

- four fitting procedures to see systematic error of the method

	I $=0$ total CS	S $=+1$ resonance
FIT 1	Carroll 73	no
FIT 2	Bowen 70	no
FIT 3	Bowen 70	P01 $(1 / 2+)$
FIT 4	Bowen 70	P03 $(3 / 2+)$

see theoretical uncertainties

KN scattering in ChPT

- I=1 $\left(K^{+} p\right)$ cross section, fitted, is reproduced well

| \star D. Jido

KN scattering in ChPT

- I=1 $\left(K^{+} p\right)$ differential cross sections, fitted, are also reproduced well

KN scattering in ChPT

- I=0 total cross sections, fitted, are not consistent in different fits

KN scattering in ChPT

. $K^{+} n \rightarrow K^{0} p$ (charge exchange) diff. CS, fitted, are also reproduced well.

$$
K^{+} n \rightarrow K^{0} p
$$

„1 D. Jido

KN scattering in ChPT

- I=1 parameters are consistently determined

LEC	unit	FIT 1	FIT 2	FIT 3	FIT 4	FIT 3'
$b^{I=1}$	$\left[\mathrm{GeV}^{-1}\right]$	-1.07 ± 0.11	-1.10 ± 0.10	-0.11 ± 0.12	-1.08 ± 0.11	-0.39 ± 0.12
$d^{I=1}$	$\left[\mathrm{GeV}^{-1}\right]$	-2.05 ± 0.20	-2.00 ± 0.17	-0.19 ± 0.19	-1.97 ± 0.17	-0.69 ± 0.18
$g^{I=1}$	$\left[\mathrm{GeV}^{-1}\right]$	-0.82 ± 0.22	-0.93 ± 0.18	-0.80 ± 0.20	-1.01 ± 0.19	-1.07 ± 0.21
$h^{I=1}$	$\left[\mathrm{GeV}^{-1}\right]$	3.67 ± 0.50	4.07 ± 0.60	0.91 ± 0.54	4.21 ± 0.60	2.07 ± 0.50
$w^{I=1}$	$\left[\mathrm{GeV}^{-2}\right]$	-0.76 ± 0.11	-1.00 ± 0.10	-0.36 ± 0.10	-1.05 ± 0.10	-0.66 ± 0.10
$b^{I=0}$	$\left[\mathrm{GeV}^{-1}\right]$	-3.66 ± 0.30	1.45 ± 0.40	2.36 ± 0.48	2.29 ± 0.40	-0.82 ± 0.50
$d^{I=0}$	$\left[\mathrm{GeV}^{-1}\right]$	-9.21 ± 0.40	-0.20 ± 0.40	-1.42 ± 0.58	-0.63 ± 0.50	-1.95 ± 0.60
$g^{I=0}$	$\left[\mathrm{GeV}^{-1}\right]$	1.46 ± 0.50	6.10 ± 0.70	8.27 ± 0.95	8.07 ± 0.80	1.03 ± 0.90
$h^{I=0}$	$\left[\mathrm{GeV}^{-1}\right]$	16.29 ± 0.70	-3.99 ± 0.80	-1.64 ± 0.96	-4.91 ± 0.80	3.91 ± 0.90
$w^{I=0}$	$\left[\mathrm{GeV}^{-2}\right]$	-0.57 ± 0.29	4.23 ± 0.35	4.92 ± 0.46	4.99 ± 0.40	-0.11 ± 0.40
v_{-}	$\left[\mathrm{GeV}^{-1}\right]$	42.89 ± 1.70	12.32 ± 1.70	5.00 ± 0.19	10.12 ± 1.70	6.89 ± 0.19
v_{+}	$\left[\mathrm{GeV}^{-1}\right]$	-7.55 ± 0.90	4.28 ± 0.90	-3.63 ± 0.93	4.74 ± 0.90	-1.98 ± 0.90
$\chi_{\text {dof }}^{2}$		2.41	2.74	2.95	2.96	3.00

2nd min. of FIT3

in-medium strange quark condensate

- quark condensate in symmetric nuclear matter lizawa, DJ, Hübsch, PTEP 2024, 053D0I (2024)

$$
\frac{\langle\bar{u} u+\bar{s} s\rangle^{*}}{\langle\bar{u} u+\bar{s}\rangle_{0}}=1+\frac{\rho}{M_{K}^{2}} \frac{3 T_{K N}^{I=1}(0)+T_{K N}^{I=0}(0)}{2 M_{N}}=1+\frac{3 b^{I=1}+b^{I=0}}{F_{K}^{2}} \rho
$$

in-medium strange quark condensate

- quark condensate in symmetric nuclear matter lizawa, DJ, Hübsch, PTEP 2024, 053D0I (2024)

$$
\frac{\langle\bar{u} u+\bar{s} s\rangle^{*}}{\langle\bar{u} u+\bar{s} s\rangle_{0}}=1+\frac{3 b^{I=1}+b^{I=0}}{F_{K}^{2}} \rho
$$

$\mathbf{1 0 - 2 0 \%}$ reduction in FITs 2, 4 and $\mathbf{3}^{\prime}$
FIT3' : second χ^{2} minimum of FIT 3
Th.: LECs determined by baryon masses obtained
in lattice calculation with various quark masses
L. Geng, Front. Phys. 8, 328 (13)

Pheno. : LECs fixed by observed baryon masses and σ term
B.Kubis, U.G.Meissner, EPJC18, 747 (01)
M. Holmberg, S.Leupold, EPJA54, 103 (18)

ChPT. : global fitting of LECs using πN and KN phase shift analyses
J.X.Lu et al. PRD99, 054024 (19)

- behavior of in-medium condensate is highly dependent on choice of FITs
- current status of $\mathrm{K}+\mathrm{N}$ scattering data not be of sufficient quality for determination of LECs.

$\left[\mathrm{GeV}^{-1}\right]$	FIT 1	FIT 2	FIT 3	FIT 4	FIT 3	Th.	Pheno.	ChPT
$3 b^{I=1}+b^{I=0}$	-6.87	-1.86	2.02	-0.96	-1.98	-1.36	-2.47	-0.674

D. Jído

KN scattering in ChPT

- $K^{+} n$ elastic scattering, not fitted
both $\mathrm{I}=1$ and $\mathrm{I}=0$ are fixed by experimental observation, but the reproduction of $K^{+} n$ elastic scattering is poor

Summary

- in-medium quark condensate can be evaluated by correlation function in soft limit
- it connects to quark condensate to the low energy scattering amplitude in low density
- obtain reduction of $|\langle\bar{u} u+\bar{s} s\rangle|$ in nuclear medium as a qualitative conclusion
- NNLO chiral perturbation theory
- perfect (nice) description of K^{+}p elastic scattering amplitude up to $\mathrm{P}_{\mathrm{lab}}=500(800) \mathrm{MeV} / \mathrm{c}$
- unsatisfactorily reproduces $\mathrm{I}=0$ scattering amplitudes
- there are still ambiguities in low energy $K^{+} n$ amplitudes to extrapolate to soft limit
- outlooks
- for $K^{+} n$ scattering, direct calculation of $K^{+} d \rightarrow K N N$ will be performed
- $K_{L} p \rightarrow K^{+} n$ in K-long facility accesses $\mathrm{I}=0 \mathrm{KN}$ amplitude
- introduce $\operatorname{SU}(3)$ breaking to calculation of $\langle\bar{u} u+\bar{s} s\rangle^{*}$ to extract $\langle\bar{s} s\rangle^{*}$ alone
- beyond linear density, calculate correlation function directly based on in-medium ChPT
D. Jído

Advancing science and human wellbeing

Institute of
 SCIENCE TOKYO

Science Tokyo will be established on October 1, 2024, following the merger between Tokyo Tech and TMDU.

Backup slides

in-medium quark condensate

- correlation function approach
a correlation function (axial vector) in medium

$$
\Pi_{5}^{a b}(q)=\mathrm{F} . \mathrm{T} . \partial^{\mu}\langle\Omega| \mathrm{T}\left[A_{\mu}^{a}(x) P^{b}(0)|\Omega\rangle, \quad|\Omega\rangle:\right. \text { nuclear matter ground state }
$$

$$
\text { axial current } A_{\mu}^{a}=\frac{1}{2} \bar{q} \gamma_{\mu} \gamma_{5} \tau^{a} q, \quad \text { Noether current of chiral symmetry }
$$

$$
\text { pseudoscalar field } P^{a}=\bar{q} i \gamma_{5} \tau^{a} q, \quad \text { ChS trans. }\left[Q_{5}^{a}, P^{b}\right]=-i \delta^{a b} S
$$ according to chiral Ward identity in the soft limit, $\quad \Pi_{5}^{a b}(0)=\langle\Omega|\left[Q_{5}^{a}, P^{b}\right]|\Omega\rangle=-i \delta^{a b}\langle\bar{q} q\rangle^{*}$

Ward identity is an operator relation, applicable for any physical states

- if one evaluates the correlation function in medium, which is in-medium propagation of NG boson, we obtain the quark condensate in nuclear medium by taking its soft limit.
D. Jído

in-medium quark condensate

- correlation function approach

$$
\lim _{q \rightarrow 0} \mathrm{~F} . \mathrm{T} . \partial^{\mu}\langle\Omega| \mathrm{T}\left[A_{\mu}^{a}(x) P^{b}(0)|\Omega\rangle=-i \delta^{a b}\langle\bar{q} q\rangle^{*}\right.
$$

- in-medium chiral perturbation theory, diagrammatical calculation

etc.
- two-flavor ChPT at NNLO, density up to k_{F}^{5}, without N-N correlation

reproduce 35% reduction at $\rho=\rho_{0}$

Possible wide resonance with $S=+1$ in unitarized amplitudes

Aoki, DJ, PTEP2OI9,013DOI(19)

a Wiaeren

- to investigate possibility to have resonances in the amplitude unitarized amplitude \mathbf{T}

$$
T=V+V G T
$$

V : interaction kernel, given by ChPT
G : KN loop function ($I=0, \mid=1$)
one subtraction constant is fixed as a natural value

- chiral Lagrangian

 most general form up to next-leading-order 8 LECs (4 LECs for $\mathrm{I}=1$, 4 LECs for $\mathrm{I}=0$)- data up to 800 MeV , where inelastic contributions start to be significant $K^{+} p \rightarrow K^{+} p$, total and differential cross sections, plab $=145$ to 726 MeV , which determine $\mathrm{I}=1$ amplitudes very well $K^{+} n \rightarrow K^{+} n, K^{0} p$, differential cross sections, plab $=526,604,640 \mathrm{MeV}$, total cross section $I=0$

$\mathrm{I}=1$ total cross sections

- we have two solutions

good agreements
solution 1 is consistent with Martin' amplitude and SAID

$\mathrm{K}+\mathrm{p}$ differential cross sections

$\mathrm{I}=0$ total cross sections

- increase at plab ~ $500 \mathrm{MeV} / \mathrm{c}$ is reproduced

- solution 1: Po1 amplitude dominate
- solution 2: P03 amplitude largely contributed

$\mathrm{K}+\mathrm{n} \rightarrow \mathrm{K}^{0} \mathrm{p}$ charge exchange scatt.
 solution I
 solution 2

| | D. Jido
29
QNP2024 at Barcelona

$\mathrm{K}+\mathrm{n}$ elastic scattering

solution I

solution 2

Possible broad resonance with $\mathrm{S}=+\mathrm{l}$

- a resonance pole around 1650 MeV (plab $=400 \mathrm{MeV}$) with a large width

Table 3. The resonance states of Solutions 1 and 2.

amplitude $\left(J^{P}\right)$	mass [MeV]	width [MeV]	
Solution 1	$P_{01}\left(\frac{1}{2}^{+}\right)$	1617	305
Solution 2	$P_{03}\left(\frac{3}{2}^{+}\right)$	1678	463

wavefunction renormalization

- leading order (Weinberg-Tomozawa term)

$$
Z=1+\frac{3 \rho_{0}}{8 M_{K} f_{K}^{2}} \frac{\rho}{\rho_{0}}=1+0.082 \frac{\rho}{\rho_{0}}, \quad 8 \% \text { enhancement at } \rho=\rho_{0}
$$

- + next-to-leading order (without medium modification on kaon)
lizawa, DJ, Hübsch, PTEP 2024, 053D0I (2024)

a few \% enhancement with $p_{K^{+}} \sim 500 \mathrm{MeV}$

