Using light hypernuclei to constrain hypernuclear interactions

Andreas Nogga, Forschungszentrum Jülich

10th International Conference on Quarks and Nuclear Physics (QNP2024), Universitat de Barcelona, Barcelona, Spain, July 8-12, 2024

- Motivation
- YN interactions
- ${\ }$ ${\ }$ Uncertainty of Λ separation energies and size of chiral 3BF contributions
- Chiral YNN interactions
- Conclusions & Outlook

in collaboration with Johann Haidenbauer, Hoai Le, Ulf Meißner

Hypernuclear interactions

Why is understanding hypernuclear interactions interesting?

- hyperon contribution to the EOS, neutron stars, supernovae
- "hyperon puzzle"
- Λ as probe to nuclear structure
- flavor dependence of baryon-baryon interactions

(SN1987a, Wikipedia)

- non-trivial constraints on the YN interaction even from lightest ones
- size of YNN interactions? need to include Λ - Σ conversion!

Hypernuclei Only few YN data. Hypernuclear data provides additional constraints.

- AN interactions are generally weaker than the NN interaction
 - naively: core nucleus + hyperons
 - "separation energies" are quite independent from NN(+3N) interaction
- no Pauli blocking of Λ in nuclei
 - good to study nuclear structure
 - even light hypernuclei exist in several spin states

(from Panda@FAIR web page)

4440

0440

140

640

oHe

140

40

40

140

34

Chiral NN & YN interactions

EFT based approaches

Chiral EFT implements chiral symmetry of QCD (adapted from Epelbaum, 2008)

- symmetries constrain exchanges of Goldstone bosons
- relations of two- and three- and more-baryon interactions
- breakdown scale $\approx 600 700 \, MeV$
- Semi-local momentum regularization (SMS) up to N²LO

Retain flexibility to adjust to data due to counter terms **Regulator required** — cutoff/different orders often used to estimate uncertainty $\Lambda - \Sigma$ conversion is explicitly included (3BFs appear only in N²LO)

SMS NLO/N²LO interaction

JÜLICH Forschungszentrum

Selected results (show $\Lambda = 550 \, \text{MeV}$, others are very similar in quality)

- most relevant cross sections very similar in NLO and N²LO
- similar to NLO19 (non-local regulator)
- alternative fit (see later)
- uses ${}^3_{\Lambda}H$ to determine spin dependence

Σ⁻p -> Λn

July 10th, 2024

J. Haidenbauer et al. EPJ A 59, 63 (2023).

SMS NLO/N²LO interaction Forschungs: new data (Miwa(2022), see talk on Friday) at higher energies provides new constraints! $\Sigma^+ p \rightarrow \Sigma^+ p$ 8 $p_{lab} = 500 \text{ MeV/c}$ (6 do/dΩ (mb/sr) 8 მ 4 0 -2 (degrees) -4 N²LO(550) -6 NLO(550) ∞ **NLO19** -8 N²LO(550) (alter.) -10 NLO19(600) (alter.) 3 0 200 400 600 -0.5 0.5 0.0 1.0 () () p_{lab} (MeV/c) $\cos \theta$

J. Haidenbauer et al. EPJ A 59, 63 (2023).

Uncertainty analysis to A = 3 to 5

JULICH

Order N²LO requires combination of chiral NN, YN, 3N and YNN interaction

NRW-FAIR

Results for different orders enable uncertainty estimate:

Ansatz for the order by order convergence:

$$X_K = X_{ref} \sum_{k=0}^{K} c_k Q^k \quad \text{where} \quad Q = M_{\pi}^{eff} / \Lambda_b \quad (X_{ref} \text{ LO, exp., max, ...})$$

Bayesian analysis of the uncertainty following Melendez et al. 2017,2019

Extracting c_k for $k \le K$ from calculations **probability distributions** for c_k $\delta X_K = X_{ref} \sum_{k=K+1}^{\infty} c_k Q^k$

Uncertainty due to missing higher orders is more relevant

than numerical uncertainty! (for light nuclei)

Application to ${}^5_{\Lambda}He$ and summary

- without YNN: sizable uncertainties at A = 4 and 5
- A = 3 sufficiently accurate
- NN/YN dependence small at least for A = 3

at the same time: estimate of YNN !

YNN (ANN) interactions

Leading 3BF with the usual topologies (see Petschauer et al., 2016 & 2017)

ChPT \longrightarrow all octet mesons contribute \longrightarrow only take π explicitly into account

2 LECs in ΛNN (up to 10) 2 LECs in ΛNN (up to 14)

3 LECs in ΛNN 5 LECs in ΣNN + 1 Λ-Σ transition

only few data \longrightarrow need to keep the **# of LECs** small Decuplet baryons (Σ^* ...) might enhance YNN partly to NLO (see Petschauer et al., 2017)

By decuplet saturation all LECs can be related to the following leading octet-decuplet transitions (Petschauer et al., 2020)

$$\propto C = \frac{3}{4}g_A$$
 $\propto G_1, G_2$ reduction to 2 LECs

YNN (ΛNN) interactions

 $\propto CG_1, CG_2$ $\propto C(G_1 + 3G_2)$

\propto	$(G_1)^2, (G_2)^2, G_1$	G	2
\propto	$(G_1 + 3G_2)^2$	1	LEC

density dependent BB interactions (Petschauer et al., 2017) (Haidenbauer et al., 2017) 20 application to nuclear matter (Haidenbauer et al., 2017) NLO19 + density dep. ANN neutron stars (Logoteta et al., 2019) U_{Λ} (MeV) contribution on the single particle potentials can be large -20 realistic results seem to require partly cancelations of 2π and 1π exchange (fixes sign of $G_1 + 3G_2$!) SC97f -40 Recently: successful benchmark of matrix elements: Jülich 04 Hoai Le et al. arXiv:2407.02064v1 0.5 1.0 1.5 2.0

July 10th, 2024

 ρ/ρ_0

YNN (ANN) interactions in practice

NRW-FAIR

Decuplet approximation in YNN

 $\propto C^2$

 $\propto CG_1, CG_2$

 $\propto (G_1)^2, (G_2)^2, G_1G_2$

is not sufficient to fix spin dependence

→ + ΛNN contact terms without decuplet constraints

$$\bigwedge \quad \text{ANN} \propto C'_1, C'_2, C'_3$$

ad hoc choice: alter C_2 :

 C_2^\prime introduces a spin dependent interaction in the most relevant particle channel July 10th, 2024

YNN fit

- Fit to 0^+ and 1^+ state of $^4_\Lambda He$ and/or $~^5_\Lambda He$

12

- spin-dependence in A=4 not well explained by decuplet saturation
- C_2' term improves 0^+ of ${}^4_{\Lambda}$ He and $1/2^+$ of ${}^7_{\Lambda}$ Li
- agreement generally much better than N^2LO uncertainty

YNN prediction for $^{7}_{\Lambda}$ Li

- good agreement
- C'_2 term included, but not very important (not shown)
- higher states have significant uncertainty

Conclusions & Outlook

- YN interactions not well understood
 - scarce YN data
 - more information necessary to solve "hyperon puzzle"
- New SMS YN interactions
 - give an accurate description low energy YN data
 - order LO, NLO and N²LO allow uncertainty quantification
 - have a non-unique determination of contact interactions (data necessary)
- Chiral 3BF need to be included
 - NLO uncertainty is sizable in A = 4 and beyond
 - chiral 3BFs are now available non-local and SMS regularization
 - fitting to ${}^4_{\Lambda}$ He and/or ${}^5_{\Lambda}$ He possible results agree with previous estimates
 - but: decuplet saturation alone does not improve spin dependence
 - \bullet spin-dependent ΛNN leads to further improvement
 - however: uncertainty estimate in N²LO of incomplete N²LO YNN force?
 - study cutoff dependence
 - application to more p-shell hypernuclei

14

Conclusions & Outlook

- YN interactions not well understood
 - scarce YN data
 - more information necessary to solve "hyperon puzzle"
- New SMS YN interactions
 - give an accurate description low energy YN data
 - order LO, NLO and N²LO allow uncertainty quantification
 - have a non-unique determination of contact interactions (data necessary)
- Chiral 3BF need to be included
 - NLO uncertainty is sizable in A = 4 and beyond
 - chiral 3BFs are now available non-local and SMS regularization
 - fitting to ${}^4_{\Lambda}$ He and/or ${}^5_{\Lambda}$ He possible results agree with previous estimates
 - but: decuplet saturation alone does not improve spin dependence
 - spin-dependent ΛNN leads to further improvement
 - however: uncertainty estimate in N²LO of incomplete N²LO YNN force?
 - study cutoff dependence
 - application to more p-shell hypernuclei

