Overview of Strangeness Nuclear Physics at J-PARC

Koji Miwa (Tohoku Univ.)

The 10th International Conference on Quarks and Nuclear Physics, July 8 – 12, 2024

Contents

- Hyperon-Nucleon Interaction
- Few-body strangeness systems
- Exotic systems with strangeness
- Recent S=-2 studies
- Strangeness physics at extended hadron hall
- Summary

Neutrino Experimental Facility

Neutrino Experimental Facility

Neutrino Experimental Facility

Neutrino Experimental Facility

Particle and Nuclear Physics at HEF

Comprehensive research on the origin and evolution of matter and the universe

- the mystery of the matter-dominated universe,
- the evolution from quarks to hadrons (the smallest composite particles)
- neutron star as a giant atomic nucleus.

Intensity frontier accelerator providing intense and variety of secondary beams

Big Bang

Quark

? Birth of a matter-

dominated universe

the Standard Model

Search for physics beyond

Particle and Nuclear Physics at HEF

Comprehensive research on the origin and evolution of matter and the universe

- the mystery of the matter-dominated universe,
- the evolution from quarks to hadrons (the smallest composite particles)
- the neutron star as a giant atomic nucleus.

$\mu \rightarrow e$ conversion measurement

Search for charged lepton flavor violation 100 times improvement over present upper limits

Rare decay of neutral kaon

Search for CP violation beyond the standard model The world's highest sensitivity exceeding the standard model

Mass modification of vector mesons in nuclei Elucidation of the mass acquisition mechanism of hadrons Vector meson in nuclei : 10 times more precision

Systematic study of Kaonic nuclei

Study of exotic hadron bound system including K⁻

Mass number dependence of kaonic nuclei

Spectroscopy of S=-1, -2 hypernuclei

Elucidation of the appearance mechanism of $\Xi,\,\Lambda$ hyperons in dense matter

Excellent mass resolution of 2 MeV for Ξ hypernuclei

Hypernuclear physics

<u>Baryon-Baryon interaction</u> <u>Study of light Λ , Ξ hypernuclei</u> <u>Spectroscopy of heavy hypernuclei</u>

Progress of theory & experiment of BB int. study

Theoretical progress

Hyperon-Nucleon int. w/ chiral effective field theory (J. Haidenbauer et al.)

Hyperon potential by Lattice QCD

BB interaction at almost physical point for multistrangeness sector

Improving accuracy w/ our new data

Experimental progress

BB interaction by femtoscopy

$$c(k^*) = \int S(r^*) \left| \Psi(\overrightarrow{k^*}, \overrightarrow{r^*}) \right|^2 d^3r$$

Fix source size(S(r^{*})) \rightarrow Study interaction from wave function ($\Psi(\vec{k^*}, \vec{r^*})$)

125

100

75

50

25

-25

-50

-75 ← 0.0

V[MeV]

Σp scattering experiment at J-PARC (E40)

Many Σ hyperons are produced in LH₂ target

 Σ are tagged by $\pi^{\pm}p \rightarrow K^{+}X$ reaction

- Σ⁻ beam : 17 M
- Σ⁺ beam : ~65 M

Secondary Σp scattering events are detected by surrounding detectors

- Σ-p elastic scattering
- $\Sigma^- p \rightarrow \Lambda n$ reaction
- Σ⁺p elastic scattering

Systematic measurements of $~\Sigma \text{p}~\text{d}\sigma/\text{d}\Omega$

First accurate and systematic measurements of differential cross sections of Σ -proton channels

Quark model (fss2) and chiral EFT seem to be rather consistent with data, whereas Nijmegen (ESC) models is inconsistent at the forward angles.

$d\sigma/d\Omega$ of Σ^+p elastic scattering

T. Nanamura et al., Prog. Theor. Exp. Phys. 2022 093D01

E40 data : much smaller than fss2 prediction and E289 results

Derived phase shift suggests that the ${}^{3}S_{1}$ interaction is moderately repulsive.

0.5

0.6

 Σ^+ momentum [GeV/c]

- A δ3S1>0

▲ B δ3S1<0

<u>→ B δ3S1>0</u>

- C δ3S1<0

- C δ3S1>0

NSC97 fss2

···· ESC16

NSC97f

$d\sigma/d\Omega$ of Σ^+p elastic scattering

T. Nanamura et al., Prog. Theor. Exp. Phys. 2022 093D01

Derived phase shift suggest that the ${}^{3}S_{1}$ interaction is moderately repulsive.

New Σp scattering data and progress of Chiral EFT

15

But, the interactions are not uniquely determined yet.

We need more data from additional channels (Λp , ...) and additional differential observables (polarizations, ...)

Hypertriton puzzle

Heavy ion experimental results settle down?

- B_{Λ} measurement
- MAMI : decay pion spectroscopy
- JLab : ³He (e, e'K⁺) missing mass spectroscopy
- J-PARC E07 : hyperfragment at K- interaction on emulsion

Lifetime measurement by direct time measurement

- ELPH : ${}^{3}\text{He}(\gamma, K^{+})$ reaction
- J-PARC E73 : ³He (K⁻, π^0) reaction

E73 has stated data taking of ${}^3_{\Lambda}$ H run

Lifetime measurement by direct time measurement between production and decay

T. Akaishi et al., PLB 845 (2023) 138128

 ${}^{3}_{\Lambda}$ H production was confirmed from the decay π^{-} 's momentum

273kW*Day executed in May, 2021 $\mathrm{K}^{-} + {}^{3}\mathrm{He} \rightarrow^{3}_{\Lambda}\mathrm{H} + \pi^{0}$ slows down and decays at rest $^{3}_{\Lambda}\mathrm{H} \rightarrow^{3}\mathrm{He} + \pi^{-}$ $^{3}_{\Lambda}\mathrm{H} \rightarrow^{2}\mathrm{H} + \mathrm{p} + \pi^{-}$ 400 13.3 ± 0.4 (stat.)Me 350 δE correction counts/2MeV/c 300 Λ/Σ^0 contribution 250 200 150 Σ^{-} contribution 100 50 -0.25 -0.2 -0.15 -0.1 -0.05 pion momentum * pion charge[GeV/c] -0.25 -0.050 11

H dibaryon (SU(3) flavor singlet hexaquark state)

 $IM(\Lambda\Lambda)$ (GeV/c²)

Progress on analysis of HypTPC

Observation of an exotic hadron bound system including K⁻ meson

Strong attractive interaction between Kbar and N \rightarrow Exotic hadronic system with Kbar meson

New development of detailed systematic investigation of novel nuclei containing K-mesons

Observation of an exotic hadron bound system including K⁻ meson

Strong attractive interaction between Kbar and N \rightarrow Exotic hadronic system with Kbar meson

New development of detailed systematic investigation of novel nuclei containing K-mesons

- Mass dependence of Kbar-nucleon system from K-p to K-ppnn
 - Aiming to clarify the origin of QCD mass and the mysteries of high-density nuclear matter by measuring changes in the properties of K-mesons in nuclear matter.

K⁻p and K⁰n mass thresholds

J-PARC E31 @ K1.8BR

• First derivation of S-wave KbarN scattering amplitude in I=0 channel from 3 $\pi\Sigma$ decay modes.

Resonance pole was found at $1417.7^{+6.0}_{-7.4}$ $^{+1.1}_{-1.0} + \begin{bmatrix} -26.1^{+6.0}_{-7.9} & ^{+1.7}_{-2.0} \end{bmatrix} i \text{ MeV}/c^2$

S. Aikawa et al., Phys. Lett. B 837 (2023) 137637

Observation of an exotic hadron bound system including K⁻ meson

Strong attractive interaction between Kbar and N \rightarrow Exotic hadronic system with Kbar meson

New development of detailed systematic investigation of novel nuclei containing K-mesons

Topics with S=–2 hypernuclei

Performed experiment Future experiment

- s-shell $\Lambda\Lambda$ hypernuclei
 - ${}^{5}_{\Lambda\Lambda}H$: Possible lightest $\Lambda\Lambda$ hypernucleus (E75)
- A=6~17 $\Lambda\Lambda$ hypernuclei
 - Confirmation of $\Lambda\Lambda$ interaction and nuclear structure effect such as shrinkage due to Λ (E07)
- E hypernuclei
 - Emulsion (E07) & spectroscopy (E70)
- Ξ N interaction with X-ray from Ξ -atoms (E03, E07)
 - EN interaction at nuclear surface
- $\Lambda\Lambda$ p-wave interaction
 - excited $\Lambda\Lambda$ hypernuclear state with one Λ hyperon in p-orbit
 - Direct production of $\Lambda\Lambda$ hypernuclei via (K⁻, K⁺) reaction (E70 ?)
- Search for H-dibaryon state (E42)
 - Sharp resonance just below ΞN threshold is predicted by LQCD

Double Λ hypernuclei at J-PARC and KEK

H. Ekawa et al.,

The value of $\Delta B_{\Lambda\Lambda}$ seems to be inconsistent with that of the NAGARA event

Ξ hypernuclei

<u>Confirm the attractive Ξ -nuclear potential from observation of Ξ hypernuclei in emulsion</u>

Ξ hypernuclei

<u>Confirm the attractive Ξ -nuclear potential from observation of Ξ hypernuclei in emulsion</u>

PTEP. 2021, 073D02

First attempt to measure Ξ Atomic X-ray in E07

Ξ -Ag/Br atomic X rays in emulsion

Triple-coincidence hybrid method

- 1. Ξ production by spectrometers
- 2. Ξ stop ID by emulsion
- 3. X-ray measurement with Ge detectors

X-ray peaks were not observed due to lower emulsion and Ge detector efficiencies than expected

 $\sigma \text{-stop} \qquad \rho \text{-stop with Auger electron} \\ (\text{Nuclear fragment from } \Xi^- \text{ stop}) \qquad (\text{Absorption by heavy elements}) \\ \end{cases}$

Ξ^- Fe atomic X-ray (E03)

 $n=7\rightarrow 6$: X-ray energy = 172 keV \leftarrow small shift/width

n=6→5 : X-ray energy = ~286 keV ← finite shift/width due to ΞN interaction expected shift ~ 4keV, width(Γ) ~ 4keV No clear peak structures are found at present.

BG level is consistent with our expectation

X ray yields are found to be smaller than expectation?

 \rightarrow Good S/N measurement may have advantage than high statistics measurement.

Future measurement w/ Ξ stop identification using active target

E70 experiment with S-2S spectrometer

 $^{12}{}_{\Xi}Be$ spectroscopy by ^{12}C (K⁻, K⁺) reaction

2024 Spring : Commissioning with beam 2024 Winter : Physics run

E70 experiment with S-2S spectrometer

$\Xi^{-12}C$ X-ray measurement with AFT

Construction of S-2S has been completed!

Aerogel

In E03, we found that X ray yields is smaller than expectation. → Good S/N measurement may have advantage than high statistics measurement.

Ξ- stop ID w/ Active Fiber Target
95% background reduction! (w/ 70% survival ratio)
We have chance to take X-ray data
in parallel with E70 (Ξ hypernuclear spectroscopy w/ S-2S)
physics data-taking

Extract density dependent ΛN interaction

Ultra-high-resolution Λ hypernuclear spectroscopy

- intense dispersion matched π beam
- Systematic ΛN scattering measurement
 - intense polarized Λ beam

Investigate diquarks in baryons

- High-resolution charm baryon spectroscopy
 - intense high-momentum π beam

K10

- High-resolution multi-strange baryon spectroscopy
 - intense high-momentum separated K beam

Search for new physics beyond the SM

- Most sensitive $K_L^0 \to \pi^0 \nu \overline{\nu}$ measurement
 - intense neutral K beam

Expanded Research

33

K10

KL2

- -

K1.1

at the Extended Facility

HIHR

high-p (π 20)

From Quarks to Neutron stars

towards unified understanding of strongly interacting systems over 10¹⁹ scale difference

Why can heavy neutron stars exist?

> Hyperons ($\Lambda, \Xi, ...$) emerge in dense neutron star matter?

ΛNN 3 Baryon Force is a key

a tiny fraction of 3 Baryon Force effects

3/

38

39

Summary

- J-PARC is a powerful accelerator facility for particle and nuclear physics.
 - A lot of hadron and strangeness nuclear physics programs
- Recent highlights
 - Accurate measurement of Σp scattering cross sections
 - Clear observation of kaonic nuclear system
 - Systematic compiling of double Λ hypernuclei from KEK to J-PARC
 - Clear identification of Ξ hypernucler states
- Near future programs
 - Lifetime measurement of ${}^3_{\Lambda}H$
 - Ξ hypernuclear spectroscopy with S-2S spectrometer and Ξ atomic X-ray measurement.
- Facility upgrade
 - Hadron extension project is under consideration
 - Ultra high-resolution hypernuclear spectroscopy with dispersion matching method at HIHR.