Nuclear modification of the production of Y mesons with CMS

Florian Damas for the CMS Collaboration QNP 2024, Barcelona, July 11

CMS

Probing strongly-interacting matter with quarkonia

quarkonium states are ideal tools to study bound states in extreme conditions key insights of the dynamics within deconfined matter at various scales

Quarkonium's fate in hot QCD matter

 Dissociation via scatterings with QGP constituents
 broadening of the spectral functions leading to sequential melting with temperature

Quarkonium's fate in hot QCD matter

- Dissociation via scatterings with QGP constituents
 broadening of the spectral functions leading to sequential melting with temperature
- (Re)formation of heavy quark bound states
 - recombination of correlated pairs
 reshuffling of the population of states
 - ``regeneration'' if many heavy quarks produced
 significant for charmonia (cf. <u>N. Oei's talk</u>) and B_c mesons, negligible for bottomonia*

*one $b\overline{b}$ produced per PbPb collision at most

Quarkonium's fate in hot QCD matter

Dissociation via scatterings with QGP constituents $\begin{bmatrix} 3 \\ 3 \end{bmatrix} 2$ r broad sequent (Re)forn o recon connection to heavy-flavor transport (cf. <u>R. Rapp's talk</u>) res more experimental results in <u>Z. Conesa del Valle's talk</u> ° ``rege resignificant for charmonia (cf. N. Oei's talk)

and B_c mesons, negligible for bottomonia*

*one *bb* produced per PbPb collision at most

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-10 02:06:52.131328 GMT Run / Event / LS: 326483 / 8874092 / 36

Event display of a $\Upsilon \rightarrow \mu\mu$ candidate in 2018 PbPb collisions

based on <u>arXiv:2303.17026</u> (accepted by Physical Review Letters)

Observation of the Y(3S) meson and suppression of Y states in PbPb collisions

Y mesons from pp to PbPb collisions

- Excellent performance of the CMS detector
 - very efficient muon reconstruction over a large phase space (see dedicated paper <u>arXiv:2404.17377</u>)
 - recording large data samples

All three states now available in all collisions!

- first observation of the elusive Y(3S) meson in AA collisions!
- unique detailed studies of the suppression of the excited states

Nuclear modification vs centrality

Nuclear modification vs centrality

CMS

Nuclear modification vs centrality

- ordered by their binding energy $R_{AA}(1S) > R_{AA}(2S) > R_{AA}(3S)$
- increasing with the number of participants
- plateau for the most central events* balance of physical effects? let's see what the models have to say!

*also observed in the forward rapidity region [ALICE Collaboration, PLB 822 (2021) 136579]

Y(3S)

Comparison with models

detailed in backup see also <u>R. Rapp's talk</u>

Constraining models with yield double ratios

Observable with more **discriminating power**!

- (partial) cancellation of uncertainties common to all states
- mild centrality dependence of Y(3S) / Y(2S) to be confirmed with more data
- detailed comparison of model approaches
- recent exercise from the theory community
 [A. Andronic et al., EPJA 60 (2024) 4]

Correlated recombination of bottomonia

Mechanism necessary for a comprehensive description of the production of all states!

relatively more important for the excited states as demonstrated by our CMS data

Nuclear modification vs p_T

- Suppression ordering over the full phase space $R_{AA}(1S) > R_{AA}(2S) > R_{AA}(3S)$
- ► No significant dependence with p_T

Y(1S)

Y(2S) Y(3S)

Nuclear modification vs p_T

- Suppression ordering over the full phase space $R_{AA}(1S) > R_{AA}(2S) > R_{AA}(3S)$
- ► No significant dependence with p_T exact compensation of many relevant effects?
 - dissociation and recombination mechanisms

ce ?

Nuclear modification vs p_T

Estimated feed-down fractions to $\Upsilon(1S)$ in pp collisions [J. Boyd et al., PRD 108 (2023) 094024]

- Suppression ordering over the full phase space $R_{AA}(1S) > R_{AA}(2S) > R_{AA}(3S)$
- No significant dependence with p_T exact compensation of many relevant effects?
 - dissociation and recombination mechanisms
 - time scale of the formation of bound states
 - contributions from decays of heavier states (also known as feed-downs)

Open questions

- Five quarkonium states at hand, but still a lot to understand to draw a comprehensive picture
 - o feed-downs to be completed
 ➡ is the direct Y(1S) production even suppressed or just the excited states?
 - polarization measurements
 indirect constraints on missing feed-downs
 - production from jet fragmentation
 parton energy loss as high-p_T quarkonium suppression mechanism!

(see S-L Zhang et al., <u>Science Bulletin 68 (2023) 2003</u> and <u>arXiv:2403.12704</u>)

Open questions

- Five quarkonium states at hand, but still a lot to understand to draw a comprehensive picture
 - incomplete feed-down contributions
 - polarization measurements \bigcirc
 - production from jet fragmentation
- Suppression ordering in proton-nucleus collisions too!
 - o how to conciliate the measurements in both systems?
 - o formation of a deconfined medium? LHC data described by hydro and transport models [IJMPA 35 (2020) 29, PRC 107 (2023) 054905, PRC 108 (2023) 014901]

Nuclear modification factor in pPb collisions from OQS + pNRQCD [M. Strickland et al., <u>PRD 109 (2024) 9</u>]

1.5 · Ƴ(2S) ♦ ALICE 8.16 TeV, p_T < 15 GeV</p> **Y(2S)** LHCb 8.16 TeV, $p_T < 25$ GeV CMS 5.02 TeV, p_T < 30 GeV</p> 1.0 $R_{\rm pA}^{\prime}$ 0.5 **QGP** effect Energy loss + p_T broadening + nPDF (EPPS21) Energy loss + p_T broadening + nPDF (EPPS21) + QGP -2 1.5 · Υ(3S) ♦ ALICE 8.16 TeV, p_T < 15 GeV</p> **Y(3S)** CMS 5.02 TeV, p_T < 30 GeV **QGP** effect 1.0 $R_{\rm pA}^{
m Y}$ 0.5 ---- Energy loss + p_T broadening + nPDF (EPPS21) Energy loss + p_T broadening + nPDF (EPPS21) + QGP -2 2 18

Bottomonia are privileged observables to study the interactions and formation of bound states in hot QCD matter

- most precise measurements on Y production in all collision systems from CMS
- suppression hierarchy extended to the Y(3S) meson over a large phase space in AA collisions
- significant in-medium production of excited states from correlated recombination of beauty quarks
- Intriguing similarities in pPb data questioning on the potential formation of QGP phases in small systems

Take-away messages

Overall L_{int} ~5 nb⁻¹ of PbPb data by the end of Run 3

- differential studies with $\Upsilon(1S)$ + extension to high p_T
- update of measurements for excited states
- search for P-wave state signal
 - complete feed-down patterns
 - decisive test for the correlated recombination

Almost new detector for Run 4 and beyond!

- investigation of other states thanks to hadron PID
- novel observables? physics cases for light ion runs? bring your ideas!

Outlook

CMS Experiment at the LHC, CERN Data recorded: 2018-Nov-10 02:06:52.131328 GMT Run / Event / LS: 326483 / 8874092 / 36

Supplementary material ahead!

Event display of a $\Upsilon \rightarrow \mu\mu$ candidate in 2018 PbPb collisions

- Heavy Quarkonium in Extreme Conditions, A. Rothkopf, <u>Physics Reports 858 (2020) 1</u> Open quantum systems for quarkonia, X. Yao, Int. Journal of Modern Physics A 36 (2021) 20 Comparative study of quarkonium transport in hot QCD matter, EPJA 60 (2024) 4 Recent theoretical overview talks: <u>M.A. Escobedo @ Quark Matter 2023</u>, <u>J.Zhao @ SQM 2024</u>,

- <u>R. Rapp @ QNP 2024</u>

References to learn further

Dissociation vs recombination

Interactions of heavy quarks with their environment can counteract the quarkonium suppression mechanisms.

Correlated recombination

inverse process where a heavy quark-antiquark pair emits a gluon and forms a bound state again

reshuffling of the population of states!

Uncorrelated recombination (or ``regeneration'')

two heavy quarks produced independently create quarkonia via coalescence as the medium cools down

statistical enhancement prominent for charmonia at the LHC!

sketch from Xiaojun Yao

Statistical Hadronization model [Nature 561 (2018) 7723]

- quarks reaching (partial) thermalization via kinetic equilibration inside the QGP
- pp cross section + shadowing factor as inputs

All hadrons are produced at chemical freeze-out with yields based on thermal weights, heavy

Comover Interaction Model [JHEP 10 (2018) 094]

- Quarkonium suppression from scatterings with surrounding particles in the final state
- nCTEQ15 nPDF parametrisation for initial-state modification (gluon shadowing)
- Aims to describe pPb and PbPb data from the same assumptions

TAMU transport model [<u>PRC 96 (2017) 054901</u>]

- In-medium dissociation and recombination processes
- Isotropic fireball with lattice QCD based equation of state + effective absorption
- Undershoots the data for the most central collisions

Coupled Boltzmann Equations [JHEP 01 (2021) 046]

No regeneration for $\Upsilon(3S)$

Continuous dissociation and recombination of heavy-quark pairs through the QGP evolution

2+1D viscous hydrodynamics for medium description, EPPS16 nPDF for initial HQ modification

Breakdown of NRQCD formalism at high p_T ?

Open-Quantum System [PRD 104 (2021) 094049]

- 3+1D anisotropic hydrodynamics to model the bulk expansion

Continuous dissociation and recombination through the QGP evolution (Linblad equation)

Quarkonium production inside jets

• Prompt J/ ψ comes with large jet activity r delayed formation of quarkonia inside jets In-medium parton energy loss prior to fragmentation into heavy-quark bound states

