Probing properties of dense matter with neutron stars

Anthea F. Fantina (anthea.fantina[AT]ganil.fr)
Outline

- Introduction:
 - Neutron-star (NS) properties and equation of state (EoS) modelling and constraints

- Selected results in:
 - Catalysed (“cold”) NSs ($T = 0$, full equilibrium)
 - EoS and NS observables
 - Proto-neutron-star (PNS) crust ($T \neq 0$, beta equilibrium)
 - multi-component plasma, impurity parameter

- Conclusions and open questions

N.B.: In this talk, beta-equilibrated matter
NS static properties
NS (isolated): formation

- NS born hot, $T \sim 10^{10}-10^{11}$ K \sim 1 – tens MeV
- after few tens of sec – mins
 → beta equilibrium (e.g. Cameliò et al. 2017)
 → formation of crust (e.g. Pons & Viganò 2019)
 ($T < \sim 10^{9}-10^{10}$ K)
- cooling → $T < \sim 10^8$ K
 → “cold catalysed” ($\rightarrow T = 0$)
 full thermodynamic equilibrium, $P(n_B)$

Image Credit: 3G Science White Paper
NS (isolated): formation

- NS born hot, $T \sim 10^{10}-10^{11}$ K $\sim 1 –$ tens MeV
- after few tens of sec – mins
 \rightarrow beta equilibrium (e.g. Camellio et al. 2017)
 \rightarrow formation of crust (e.g. Pons&Viganò 2019)
 ($T < \sim 10^9 – 10^{10}$ K)
- cooling $\rightarrow T < \sim 10^8$ K
 \rightarrow “cold catalysed” ($\rightarrow T = 0$)
 full thermodynamic equilibrium, $P(n_B)$

Image Credit: 3G Science White Paper

but: real picture can differ from cold catalysed one

\star PNS ($\rightarrow T > 0$, $P(n_B, T)$ if beta equilibrium)

N.B.: “General purpose” EoSs $P(n_B, T, Y_q)$, accretion & B effects not addressed here

(see e.g. Oertel et al., Rev. Mod. Phys. 2017; Burgio & Fantina, ASSL Springer 2018)
Probing extreme conditions in NSs

Different states of matter spanned in NSs → inhomogeneous (crust), “pasta” phase, homogeneous (core), “exotic” particles (?) + superfluidity, (strong) magnetic field, etc.

→ Not all conditions can be probed in terrestrial labs → theoretical models!

→ Consistent description very challenging

N.B.: T = 0 picture OK for cold isolated NSs and binary (pre-merger) NSs

Image Credit: 3G Science White Paper

A. F. Fantina
Why a unified treatment?

Unified treatment of inhomogeneous & homogeneous matter
→ same nuclear model employed in different regions of star

- Challenging because of wide range of thermodynamic conditions
- Challenging because different states of matter
- But: essential to avoid spurious non-physical effects in numerical modelling

Thermodynamically consistent and unified EoSs for astro modelling & inference analyses (but not many available, e.g. Douchin&Haensel 2001; Fantina et al. 2013; Raduta&Gulminelli 2015; Viñas et al. 2021; Pearson et al. 2018; Grams et al. 2022; Xia et al. 2022; Scurto et al. 2024; see CompOSE database)

Fortin et al., PRC 94, 035804 (2016)
Suleiman et al., PRC 104, 015801 (2021)
see also Ferreira&Providencia 2020
Micro to macro through modelling

Microphysics (inputs)
(e.g. EoS, nuclear processes)

Nuclear theory (with model parameters)

Nuclear physics Experiments
e.g. nuclear masses, resonances, decay rates, ...

Astrophysical (macrophysics)
hydrodynamic/static models
(simulations)

Astrophysical observations
e.g. GW, NS masses, light curves, ...

Constraint
Prediction
Constraint
Prediction
EoS \leftrightarrow NS (static) observables (1)

- **TOV $\rightarrow M(R)$** (Tolmann 1939; Oppenheimer&Volkoff 1939; see also Haensel, Potekhin, Yakovlev, Springer 2007)

$$\frac{dP(r)}{dr} = -\frac{G\rho(r)M(r)}{r^2} \left[1 + \frac{P(r)}{c^2 \rho(r)} \right] \left[1 + \frac{4\pi P(r)r^3}{c^2 M(r)} \right] \left[1 - \frac{2GM(r)}{c^2 r} \right]^{-1}$$

$$M(r) = 4\pi \int_0^r \rho(r')r'^2 dr'$$

with b.c. $M(r=0) = 0$; $\rho(r=0) = \rho_c$

- only EoS $P(\rho)$ is needed!
- for each ρ_c (or equivalently P_c) \rightarrow integration $\rightarrow R$, $M(r = R)$

N.B.: GR in slow rotation limit w/o magnetic field!
EoS \leftrightarrow NS (static) observables (1)

- TOV $\rightarrow M(R)$ (Tolman 1939; Oppenheimer&Volkoff 1939; see also Haensel, Potekhin, Yakovlev, Springer 2007)

\[
\frac{dP(r)}{dr} = -\frac{G\rho(r)M(r)}{r^2} \left[1 + \frac{P(r)}{c^2\rho(r)} \right] \left[1 + \frac{4\pi P(r)r^3}{c^2 M(r)} \right] \left[1 - \frac{2GM(r)}{c^2r} \right]^{-1}
\]

\[
M(r) = 4\pi \int_0^r \rho(r')r'^2 dr'
\]

with b.c. $M(r=0) = 0$; $\rho(r=0) = \rho_c$

- only EoS $P(\rho)$ is needed!
- for each ρ_c (or equivalently P_c) \rightarrow integration $\rightarrow R, M(r = R)$

GR \rightarrow direct correspondence
EoS \leftrightarrow NS static properties
- for each ρ_c \rightarrow rayon R, masse M
 \rightarrow tidal deformability Λ

N.B.: GR in slow rotation limit w/o magnetic field!

EoS ↔ NS (static) observables (1)

- **TOV → \(M(R) \)** (Tolman 1939; Oppenheimer&Volkoff 1939; see also Haensel, Potekhin, Yakovlev, Springer 2007)

\[
\frac{dP(r)}{dr} = -\frac{G\rho(r)M(r)}{r^2} \left[1 + \frac{P(r)}{c^2\rho(r)} \right] \left[1 + \frac{4\pi P(r)r^3}{c^2M(r)} \right] \left[1 - \frac{2GM(r)}{c^2r} \right]^{-1}
\]

\[
M(r) = 4\pi \int_0^r \rho(r')r'^2 dr'
\]

with b.c. \(M(r=0) = 0; \rho(r=0) = \rho_c \)

- only EoS \(P(\rho) \) is needed!
- for each \(\rho_c \) (or equivalently \(P_c \)) → integration → \(R, M(r = R) \)

GR → direct correspondence

EoS ↔ NS static properties

- for each \(\rho_c \) → rayon \(R \), masse \(M \)
- tidal deformability \(\Lambda \)

? → trace back to EoS and composition?

N.B.: GR in slow rotation limit w/o magnetic field!
EoS ↔ NS (static) observables (2)

but:

- EoS model dependent!
- no ab-initio dense-matter calculations in all regimes → phenomenological models
- composition ↔ EoS → $M(R)$?

Ozel & Freire, ARAA 54, 401 (2016)

Abbott et al., Class. Quantum Grav, 37, 045006 (2020)
High-density EoS \rightarrow additional d.o.f.?

- Role of “exotic” degrees of freedom? *(not addressed in this talk, see talks Mon, session H)*
 - Hyperons \rightarrow softer EoS \rightarrow lower M_{max} (+ reduction of R and Λ for intermediate-mass)
 - Quarks \rightarrow not clear

Li et al., PRD 101, 063022 (2020)

Somasundaram & Margueron, EPL 138, 14002 (2022)
High-density EoS \rightarrow additional d.o.f.?

- Role of “exotic” degrees of freedom? (*not addressed in this talk, see talks Mon, session H*)
 Hyperons \rightarrow softer EoS \rightarrow lower M_{max} (+ reduction of R and Λ for intermediate-mass)
 Quarks \rightarrow not clear

- “Masquerade” effect

Blaschke & Chamel, ASSL 457, 337 (2018);
High-density EoS \Rightarrow additional d.o.f.?

- **Role of “exotic” degrees of freedom?** *(not addressed in this talk, see talks Mon, session H)*
 - Hyperons \rightarrow softer EoS \rightarrow lower M_{max} (+ reduction of R and Λ for intermediate-mass)
 - Quarks \rightarrow not clear

- **“Masquerade” effect**

 - **Agnostic (“non-nuclear”) approaches for NS core** (e.g. piecewise polytropes, c_s models, etc.)
 (conditioned by astro)

 - ✓ powerful \rightarrow no underlying hypotheses
 - ✗ what about nuclear physics \rightarrow composition?
 - ✗ often unique (non-consistent) low-density EoS
 \rightarrow uncertainties underestimated

Legred et al. PRD 105, 043016 (2022)
EoS \leftrightarrow nuclear matter parameters

- Expansion in density and asymmetry around n_{sat} and $\delta = 0$

 $$e_{\text{is}} = E_{\text{sat}} + \frac{1}{2} K_{\text{sat}} x^2 + \frac{1}{6} Q_{\text{sat}} x^3 + \ldots \quad \Rightarrow e_{\text{sat}}(n, \delta = 0)$$

 $$e_{\text{iv}} = E_{\text{sym}} + L_{\text{sym}} x + \frac{1}{2} K_{\text{sym}} x^2 + \frac{1}{6} Q_{\text{sym}} x^3 + \ldots \quad \Rightarrow e_{\text{sym}}(n) = e(n, \delta = 1) - e(n, \delta = 0)$$

\Rightarrow Nuclear empirical parameters (NEP, bulk)

$$X_{\text{sat,sym}} = E_{\text{sat}}, K_{\text{sat}}, Q_{\text{sat}}, \ldots, E_{\text{sym}}, L_{\text{sym}}, K_{\text{sym}}, Q_{\text{sym}}, \ldots$$

see e.g. Bulgac et al., PRC 97, 044313 (2018), Margueron et al., PRC 97, 025805 (2018), Carreau et al, EPJA 55, 188 (2019), Tews et al., EPJ A 55, 97 (2019), Dinh Thi et al., A&A 654, A114 (2021), Dinh Thi et al., EPJA 57, 296 (2021); Essick et al., PRC 104, 065804 (2021), …
A semi-agnostic approach: meta-model

- **Meta-model (MM)** (Margueron et al., PRC 97, 025805 (2018); also e.g. Lim&Holt 2019, Tsang et al. 2020) → EDF-based but flexible. Based on a Taylor expansion in density and asymmetry.

\[
\mathcal{E}_B(n_B, \delta) = \mathcal{E}_{\text{kin}}(n_B, \delta) + \mathcal{V}(n_B, \delta) \\
\mathcal{V}(n_B, \delta) = \sum_{k=0}^{N} \frac{n_B}{k!} (v_{ik}^{\text{is}} + v_{ik}^{\text{iv}} \delta^2) x^k u_k(x)
\]

- For application of MM to NS crust → CLDM
e.g. Carreau et al., EPJA 2019; Dinh Thi et al., A&A 2021; Grams et al., EPJA 2022; Mondal et al., MNRAS 2023; Davis et al., A&A 2024 (for relativistic version, see Char et al., PRD 2023)

- Vary NEP → parameter exploration (without a priori correlations) → statistical (Bayesian) analysis (see Mon-Wed talks, session H)

\[
p_{\text{post}}(\vec{X}) = \mathcal{N} p_{\text{prior}}(\vec{X}) e^{-\chi^2(\vec{X})/2} w_{\text{LD}}(\vec{X}) w_{\text{HD}}(\vec{X})
\]

- Flat non-informative prior → large parameter space
- Nuclear masses (AME)
- Low-Density filters → ab-initio (EFT)
- High-Density filters → causality, stability, \(M_{\text{NS,max}} \) (+ NICER, GW)
Constraints from nuclear physics

PURE NEUTRON MATTER (AB INITIO)

SYMMETRY ENERGY (EXP+THEO)

→ PNM calculations benchmark / constraints
→ not all popular models agree with ab-initio constraints!
→ Exp. constraints at “lower” densities & more symmetric matter
→ not always “clear” constraints → “tension” (data + modelling)

Fantina & Gulminelli, J.Phys. Conf. Ser. 2586, 012112 (2023); see also Oertel et al., Rev. Mod. Phys. 89, 015007 (2017)

Constraints from astrophysics

MASSES

RADIIS

TIDAL DEFORMABILITY

NB: most are inferred, not “direct” observations, so model dependent!
Outline

- **Introduction:**
 - Neutron-star (NS) properties and equation of state (EoS) modelling and constraints

- **Selected results in:**
 - Catalysed (“cold”) NSs ($T = 0$, full equilibrium)
 - EoS and NS observables
 - Proto-neutron-star (PNS) crust ($T \neq 0$, beta equilibrium)
 - multi-component plasma, impurity parameter

- **Conclusions and open questions**

N.B.: In this talk, beta-equilibrated matter
NS static properties
Catalysed NSs: crustal properties

CRUST-CORE TRANSITION
Meta-model + CLDM for crust

→ importance of parameters (*bulk + surface*)
→ importance of higher order parameters

→ importance of low-density EoS

Dinh Thi et al., A&A 654, A114 (2021); EPJA 57, 296 (2021)

see also Carreau et al., PRC 100, 055803 (2019), Balliet et al., ApJ 918, 79 (2021)
Effect of the (non-unified) crust

RADIUS

- **CUTER** code to reconstruct a *thermodynamically consistent and unified* low-density EoS from a (high-density) beta-equilibrium EoS
 (available for LIGO-Virgo-KAGRA collab. and publicly available on Zenodo)

- use of unique crust does not change much averages (~ few %)
- ok for current GW detectors, but next generation?
 (see also Gamba et al., Class. Quant. Grav. 37, 025008 (2020) → ~ 3%)
- underestimation of uncertainties in non-consistent approach
- quantitative error bars on NS properties can be addressed

CUTER = Crust Unified Tool for Equation-of-state Reconstruction

A. F. Fantina
Catalysed NSs: observables

Dinh Thi et al., Universe 7, 373 (2021); Dinh Thi et al., A&A 654, A114 (2021)

→ posterior compatible with observations, but: some popular models are not!
→ nucleonic hp compatible with observations → observations not yet enough constraining!

similar conclusions in Lim&Holt, EPJA 2019, Malik et al., ApJ 2022

N.B.: Many works within Bayesian analysis trying to constrain NEP
see also Beznogov & Raduta, PRC (2023); Ghosh et al., EPJA (2022); Char et al., PRD (2023); Imam et al., PRD (2024); Zhu et al., ApJ (2023); Huang et al., arXiv:2303.17518, …. + see talks on Mon, Wed, session H
How to discriminate models? (exp)

- **Nuclear physics (theory + experiments)** → information up to ~ 1.5 – 2 \(n_{\text{sat}} \)

- **reduced error bar in neutron skin measurements (e.g. PREX/CREX)** → constraints on low-order parameters in isospin sector

- **constraints at high density e.g. HADES collaboration (transport model vs data)** → constraints on higher order parameters

Reed et al., arXiv:2305.19376 (2023)

Mohs et al., PRC 105, 034906 (2022)

→ **Better extrapolation of models**
How to discriminate models? (astro 1)

- Astrophysical observations (multi-messenger)
 - “Smoking gun” observation

GW190426?

→ posterior (nucleonic matter) compatible with observations
 but: if $M_{\text{max}} \sim 2.5 \, M_{\odot}$ → challenge for nucleonic hypothesis! → exotica!

→ Nucleonic hp can be used as null hp

How to discriminate models? (astro 2)

- more and more precise data (e.g. M, R, Λ, ...)
- more sensitive detectors \rightarrow new generation (ET, CE) \rightarrow post-merger

More reliable prediction / interpretation of astrophysical observations
Better knowledge of dense matter in compact stars: *Phase transition to deconfined matter (quarks, ...)?*
Astrophysical sites of nucleosynthesis?
Outline

- Introduction:
 - Neutron-star (NS) properties and equation of state (EoS) modelling and constraints

- Selected results in:
 - Catalysed ("cold") NSs ($T = 0$, full equilibrium)
 → EoS and NS observables
 - Proto-neutron-star (PNS) crust ($T \neq 0$, beta equilibrium)
 → multi-component plasma, impurity parameter

- Conclusions and open questions

N.B.: In this talk, beta-equilibrated matter
NS static properties
Proto-NS (finite temperature)

NS formation from CCSN

- $R_{\text{shock}} \approx 200$ km
- $M_{\text{core}} \approx 0.7 M_\odot$
- $R_{\nu} \approx 20$ km
- $T_{\nu} \approx 20$ MeV

(II) $t \approx 0.5$ s
- accretion shock lift-off
- mantle collapse
- $R \approx 30$ km
- $T_{\nu} \approx 20$ MeV

(III) $t \approx 15$ s
- maximum heating
- $R \approx 15$ km
- $T_{\nu} \approx 50$ MeV

(IV) $t \approx 50$ s
- ν core cooling
- $R \approx 12$ km
- $T_{\nu} \approx 0.03$ MeV

(V) $t \approx 50 - 100$ yr
- star becomes isothermal
- $R \approx 12$ km
- $T_{\nu} \approx 0.12$ MeV

(VI) $10^8 < t < 3 \times 10^9$ yr
- observable X-ray thermal emission
- $R \approx 12$ km
- $T_{\nu} \approx 0.06$ MeV

$T_{\text{eff}} \approx 2 \times 10^8$ K

$\rho_B = 10^{-6}$ fm$^{-3}$

At finite T \rightarrow need to go beyond OCP

Gulminelli & Raduta, PRC 92, 055803 (2015)

\Rightarrow NS are born hot ($T > 1$ MeV) \Rightarrow ensemble of nuclei (MCP) expected

\Rightarrow NS crust crystallises at $T_m \sim 0.1 - 1$ MeV \Rightarrow composition of the crust “frozen”

but: depending on cooling timescales, composition can be frozen at $T > T_m$

(e.g. Goriely et al., A&A 531, A78 (2011)) or other reactions possible below T_m?

(e.g. Potekhin & Chabrier, A&A 645, A102 (2021))

for a review, see Haensel, Potekhin, Yakovlev (Springer 2007)
PNS: composition and impurities

1. Composition can be different from $T = 0$ & OCP one!

2. Co-existence of nuclear species → "impurity factor" (usually free parameter adjusted on cooling data)

$$Q_{\text{imp}} = \langle Z^2 \rangle - \langle Z \rangle^2$$

→ impact dynamic, magneto-rotational and transport properties

Dinh Thi et al., A&A 677, A174 (2023)
see also Fantina et al., A&A 633, A149 (2020);
Carreau et al., A&A 640, A77 (2021)

see e.g. Schmidt&Shternin, ASSL 457, 455 (2018) for a review; Jones, PRL 83, 3589 (1999), MNRAS 321, 167 (2001), PRL 93, 221101 (2001); Pons et al., Nat. Phys. 9, 431 (2013)
PNS crust (MCP): composition

- OCP less reliable at higher density and temperature
 → (self-consistent) MCP
- appearance of bi-modal distribution → light clusters!
 → importance of light cluster already highlighted, e.g. Typel et al., PRC 2010; Hempel et al., PRC 2011

Dinh Thi et al., A&A 677, A174 (2023) – CLDM with BSk24
(P)NS crust: impurities

✓ **Self-consistent** calculations of \(Q_{\text{imp}} = \langle Z^2 \rangle - \langle Z \rangle^2 \)

Outer crust

- HFB-24 masses

Inner crust

- MM + CLDM

- **consistent calculations of** \(Q_{\text{imp}} \) **throughout the crust** (data available)

Fantina et al., A&A 633, A149 (2020) + data on CDS

Dinh Thi et al., A&A 677, A174 (2023); see also Carreau et al., A&A 640, A77 (2020) + data on CDS
(P)NS crust: impurities

- Self-consistent calculations of $Q_{\text{imp}} = \langle Z^2 \rangle - \langle Z \rangle^2$

Consistent calculations of Q_{imp} throughout the crust → impact on transport coefficient/properties

Dinh Thi et al., A&A 677, A174 (2023); see also Carreau et al., A&A 640, A77 (2020) + data on CDS

Conclusions & open questions

- Nuclear inputs needed for neutron-star modelling → extrapolation of data / theory
- Nuclear physics + astrophysics → constraints on EoS but still hard to discriminate
 - ✓ need of (microscopic) reliable theoretical model when no data
 - ✓ need of experimental data to calibrate the models
 - ✓ need of (more precise / numerous) astrophysical observations
- Importance of MCP treatment at finite temperature
Conclusions & open questions

- Nuclear inputs needed for neutron-star modelling → extrapolation of data / theory
- Nuclear physics + astrophysics → constraints on EoS but still hard to discriminate
 - need of (microscopic) reliable theoretical model when no data
 - need of experimental data to calibrate the models
 - need of (more precise / numerous) astrophysical observations
- Importance of MCP treatment at finite temperature

- Extrapolation from raw data → model dependence of the constraints
- Lab. exper. mostly “low” density (~ saturation density), low T probed; matter in astro sites different from lab → extrapolation to astro conditions (high T and density, asymmetry, charge neutral)?
- Uncertainties in high-density EoS → blurring of different effects?
- Astro simulations vs microphysics inputs → uncertainties, consistency of inputs and relative effects of microphysics inputs in astro modelling? → systematic studies / bayesian analysis needed
Thank you