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* Precision calculations require to consider these modifications.
* [he energy per particle in nuclear matter provides information
about the equation of state.

* tquation of state of neutron stars has important astrophysical
applications:

* Properties of neutron stars.
* Dark Matter capture.

* [he Interplay between astrophysical observations and nuclear

calculations can help in improving our theoretical nuclear models.
* Neutron star equation of state explore a wide range of densities.
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e Formulation of the EFT at finite densities [Oller, PRC 65 (2002)]
* Particle-particle and hole-hole propagation.

* No regulator.

* No systematics associated to the choice of a regulator or fine tuning of the scale.

® Parameter-free

e Based on NN observables.
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of In-medium ladder diagrams to all orders with a contact interaction (scatt. length)
* The work was extended to include eff. range in S-wave and P-wave — Off-shell
effects when reaching the unitary limit.

* An expansion of the generating functional of in-medium Green

function obtained In [Oller; PRC 65 (2002)] provides the diagrams to be
resumed In the ladder approximation.

* [he sum of the Hartree and Fock diagrams gives a contribution
due to the interaction of
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* Cutoff and regulator-independent results.







o Unitary imit  [J. M. Alarcén, ). A. Oller; AOP 437 (2022)]
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 Cold atoms [J.M.Alarcén, ). A. Oller, PRC 106 (2022)]

Spin-balanced fermonic quantum liquid with P-wave interactions




e Symmetric Nuclear Matter [J. M. Alarcén, . A Oller, PRC 107 (2023)]
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e Pure Neutron Matter
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* Jo study the properties of nuclear matter at saturation density we

use the parametization [Gandolfi et al., Mon. Not. Roy. Astron. Soc. 404 (2010)]

S(n) = (B/A)pwm () — (B/A)sna(n)  S(n) =, (nﬁ) So=5(n)  L=3n, 08

ns

* We fit this parametrization to our results at low densities.

C, = 34.77(15) MeV 31.10 < Sy < 36.57 MeV
vs = 0.667(3) 57.82 < L < 78.29 MeV
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* We develop a method to compute the energy per particle in

nuclear matter at low densities.

/A Is directly related to in-vacuum NN scat

Regularizator-independent results

e Can be used to study:

* Constraints on equation o

e Unritary limit
e Cold atoms

fering amplitude.

* Equation of state of symmetric nuclear matter and pure neutron matter.

- state of neutron stars at low densities

— Important for interpolation of the EoS of neutron stars

(see Eva Lope Oter’s talk)
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