Which first order phase transitions to quark matter are possible in neutron stars?

Jan-Erik Christian, Jürgen Schaffner-Bielich, Stephan Rosswog

Universität Hamburg

Barcelona, July 8, 2024

QNP2024 - The 10th International Conference on Quarks and Nuclear Matter

Motivation	Equation of State	
		U

Motivation	Equation of State	

We know:

We know:

• Low density from terrestrial experiments and theory.

Motivation	Equation of State	

We know:

- Low density from terrestrial experiments and theory.
- Astrophysical constraints work at high density.

Twin Stars

Motivation

We know:

- Low density from terrestrial experiments and theory.
- Astrophysical constraints work at high density.
- A phase transition to QM will take place at some point.

Twin Stars

Motivation

We know:

- Low density from terrestrial experiments and theory.
- Astrophysical constraints work at high density.
- A phase transition to QM will take place at some point.
- Where is the phase transition and how can we tell from mass, radius and tidal deformability constraints?

Equation of State	
•0000	

Relativistic Mean Field Approach

Relativistic Mean Field Approach

Effective mass: $m^*/m = 0.55 - 0.75$ Symmetry energy: J = 30 - 32 MeV Slope parameter: L = 40 - 60 MeV

Relativistic Mean Field Approach

Effective mass: $m^*/m = 0.55 - 0.75$ Symmetry energy: J = 30 - 32 MeV Slope parameter: L = 40 - 60 MeV

J = 32 MeV and L = 60 MeV from chiral EFT.

• Setup following: [Hornick et al. 2018, Phys. Rev. C]

Equation of State	

Mass-Radius Relations

Equation of State	Conclusion

Mass-Radius Relations

- Increasing the central pressure increases the mass.
- *m**/*m* is directly linked to an EoS's stiffness.
- Stiffer EoSs feature higher maximal masses and larger radii, they are less compact.

Equation of State	
00000	

Mass-Radius Constraints

• Neutron stars with $2 M_{\odot}$ are known

Equation of State	
00000	

Mass-Radius Constraints

- Neutron stars with 2 M_{\odot} are known
- NICER measured radii between 11 – 16 km

Equation of State	
00000	

Mass-Radius Constraints

- Neutron stars with 2 M_{\odot} are known
- NICER measured radii between 11 - 16 km
- Potential candidates after NICER reanalysis (Vinciguerra et al. 2023)

Equation of State	Conclusion
00000	

Gravitational Wave Event GW170817

 In a binary system the companions tidal field induce a quadrupole moment:

$$Q_{ij} = -\lambda \mathcal{E}_{ij}$$

- Obtain dimensionless form: $\Lambda = \frac{\lambda}{m^5}$
- Upper limit for combined value:

[Abbott et al. 2019, Phys. Rev. X]

$$ilde{\Lambda} = ilde{\Lambda} \left(\Lambda_1, m_1, \Lambda_2, m_2
ight) \leq 720$$

Equation of State	Conclusion
00000	

Closer Look: Tidal Deformability Constraint

• Only EoSs with $m^*/m \ge 0.65$ are soft enough to fit the data.

Equation of State	Twin Stars	
	00000	

Constant Speed of Sound Quark Matter

- First order phase transition at critical pressure *p*_{trans}.
- Parameterization is well known. [Alford et. al. 2013, Phys. Rev. D]

1

• We use $c_{QM} = 1$.

$$\epsilon(p) = \begin{cases} \epsilon_{HM}(p) \\ \epsilon_{HM}(p_{trans}) + \Delta \epsilon + c_{QM}^{-2}(p - p_{trans}) \end{cases}$$

Motivation O	Equation of State	Twin Stars ○●○○○	Conclusion
Twin Star Solut	tions		

• Phase transition can lead to twin star solutions, where two stars have the same mass, but different radii.

Equation of State	Twin Stars	
	00000	

Parameter Effects on MR Relation; Hybrid vs Twin

• *p*_{trans} determines the first branch's maximum and the shape of the second branch.

[Christian 2023]

Equation of State	Twin Stars	
	00000	

Parameter Effects on MR Relation; Hybrid vs Twin

- *p*_{trans} determines the first branch's maximum and the shape of the second branch.
- $\Delta \epsilon$ strongly influences the second's maximum by determining the position of the second branch.

Equation of State	Twin Stars	
	00000	

• The GW170817 constraint can be met with a phase transition.

Equation of State	Twin Stars	
	00000	

• The GW170817 constraint can be met with a phase transition.

Equation of State	Twin Stars	
	00000	

- The GW170817 constraint can be met with a phase transition.
- A hypothetical well determined "small" star does not constrain a stiff EoS further.

Constraints on $m^*/m = 0.55$, L = 60 MeV, J = 32 MeV case

Equation of State	Twin Stars	
	00000	

- The GW170817 constraint can be met with a phase transition.
- A hypothetical well determined "small" star does not constrain a stiff EoS further.

Equation of State	Twin Stars	
	00000	

Constraints on Softer Equation of state

Constraints on $m^*/m = 0.65$, L = 60 MeV, J = 32 MeV case

Equation of State	Twin Stars	
	00000	

Constraints on Softer Equation of state

• Large parameter space allowed by constraints.

Constraints on $m^*/m = 0.65$, L = 60 MeV, J = 32 MeV case

Equation of State	Twin Stars	
	00000	

Constraints on Softer Equation of state

- Large parameter space allowed by constraints.
- No significant ΔR in allowed parameter space.

Constraints on $m^*/m = 0.65$, L = 60 MeV, J = 32 MeV case

[Christian et al. 2023]

Twin Stars

Summary and Outlook

[LIGO]

- Phase transitions in neutron stars create unique mass radius relations and tidal deformability.
- The overlap between easily detectable and possible solution is shrinking rapidly.
- Gravitational wave measurements should be able to probe the area inaccessible by mass and radius constrains.

Categories of Twin Stars

- Category I: Both maxima meet mass constraint M_{data} .
- Category II: Only the hadronic maximum exceeds *M*_{data}.
- **Category III**: Only the hybrid maximum exceeds M_{data} .
- Category IV: Only hybrid stars can be observed.

Conclusion

Equation of State	Conclusion

Category I and II NICER constraints

Equation of State	Conclusion
	0

Category III NICER constraints

[Christian and Schaffner-Bielich (2021), Phys. Rev. D]

Equation of State	Conclusion

Hybrid stars NICER constraints

Tidal deformability changes GW170817

Equation of State	Conclusion

MR constraints for more RMF models

[Christian 2023]

Equation of State	Conclusion

Backup Slide

Motivation	Equation of State	Conclusion

Parameter Variation

