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• Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering 
in hadronic collisions -> perturbative QCD can be applied. 

• In heavy-ion collisions: a quark-gluon plasma (QGP) state is produced  
-> Heavy quarks are produced before QGP formation (tQGP ~ 1 fm/c and tQ = 1/2mQ ≤ 0.1 fm/c) 
-> Identity is preserved while traversing the medium  
-> Experience the complete evolution of QGP medium

Heavy quarks: a unique probe of QGP

Therefore, heavy quarks act as 
important tools for characterizing the 
medium formed in heavy-ion collisions.

• Energy loss of partons traversing the QGP is expected to occur via both 
inelastic (radiative energy loss via medium-induced gluon radiation) and 
elastic (collisions with the QGP constituents) processes.

Charm 
mc ~ 1.3 GeV/c2  

tc ~ 0.08 fm/c

Beauty 
mb ~ 4.2 GeV/c2 
tb ~ 0.03 fm/c



Heavy Flavours: The Physics Behind the Exploration

Pb—Pb collisions: 
• Sensitivity to the energy-loss mechanism of 
heavy quarks (collisional and radiative 
processes)

• Colour/mass dependence of in-medium 
energy loss

• Possible modification of the quark 
hadronization

p—Pb collisions: 
• Study cold nuclear matter (CNM) 

effects 

• Possible collective effects

pp collisions: 
• Test pQCD calculations down to pT ≈ 0

• Study heavy-flavour quark production, 

fragmentation and hadronization

• Reference for p—Pb and Pb—Pb systems
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Production of heavy-quark hadrons can be calculated using the factorization approach:

Assumed to be 
universal across 
collision systems
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Questioning the Universality: Insights from ALICE Measurements

Measurements of the baryon-to-meson yield 
ratio -> pT-dependent enhancement of /D0 
ratio in pp w.r.t. e+e-

Λ+
c

Different hadronization mechanisms proposed: 

• Color reconnection beyond leading color (PYTHIA 8 CR Mode 2)  ̣
• Hadronization via coalescence and fragmentation in a thermalised 

system of gluons, light quarks and antiquarks (Catania, Quark 
(re)Combination Model)  ̣

• Increased feed-down from an augmented set of excited charm baryons 
(Statistical Hadronisation model + Relativistic Quark model).

Models based on fragmentation functions 
evaluated from e+e-  collisions underestimate 
the data (PYTHIA 8 Monash)

Phys. Rev. C 107 (2023) 064901



Diving Deeper: Further Investigation of Charm Fragmentation
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Regarding fragmentation, additional insights compared to single-particle studies are offered by: 

→ Charm-hadron tagged jets: 
→ access to the original parton kinematics 
→ constrain the fragmentation functions 

→ Azimuthal correlations of charm hadrons with charged particles 
→ description of the jet shape and its particle composition 
→ sensitivity to production mechanisms



The ALICE detector (Run 2)

The ALICE detector is excellent in reconstructing identified particles over a broad momentum range and in 
reconstructing primary and displaced secondary vertices.

• Inner Tracking System (vertexing, 
tracking, PID, |η|< 0.9) 

• Time Projection Chamber (tracking, 
PID, |η|< 0.9) 

• Time-Of-Flight detector (PID, |η|< 0.9) 

• V0 detectors (multiplicity and event 
activity determination, triggering,  
2.8 < η < 5.1, -3.7 < η < -1.7)
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-jets momentum fractionΛ+
c
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ALI-PUB-532884

Phys. Rev. D 109 (2024) 072005

Data hint that 
fragmentation of charm 

quarks into charm 
baryons is softer with 

respect to charm mesons, 
in the studies kinematic 

region.

Phys. Rev. D 109 (2024) 072005

• Slightly harder fragmentation 
in PYTHIA 8 Monash. 

• PYTHIA 8 CR-BLC Mode 2 
shows better agreement with 
data.



Study of two-particle azimuthal correlations

Characterization of the jet shape and its composition (for Leading Order  production) : 
● Near Side (NS): fragmentation of the tagged charm quark;

● Away Side (AS): fragmentation of the other charm quark;

● Transverse Region: sensitivity to underlying event

cc

EPCJ 80 (2020) 979
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ALI-PUB-339697

The angular distribution of the final-state particles with 
respect to the direction of the tagged charmed hadron is 
studied, providing an insight into the fragmentation of 
the charm quark. 

Fit function:
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Two-particle azimuthal correlations between D mesons and charged particles
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Comparison of correlation distributions among different collision energies in pp collisions :

EPJC 82 (2022) 335
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Compatibility found 
within uncertainties in 
all kinematic ranges.

5 TeV

7 TeV

13 TeV

D-h correlations

pT (trigger)

p T
 (a
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oc
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Increase of associated particles 
in NS and AS peaks with 
increasing D-meson pT 
→ Due to the larger energy 
available to the parton 
→ Characterization of particle 
multiplicity in jets 

Decrease of the peak width with 
increasing D-meson pT 

→ Jet hard core more collimated 
due to larger parton Lorentz 
boost

EPJC 82 (2022) 335

D-h correlations : Near- and away-side peak observables

No centre-of-mass energy 
dependence observed
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Near side Away side
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Validation of parton-shower models and Monte-Carlo 
generators : 

For yields: 

• PYTHIA 8 and POWHEG+PYTHIA provide the best 
description


• HERWIG tends to underestimate the NS peak yield at 
low pT (D) and at high pT (assoc)


• EPOS overestimates the NS yields over the whole pT 

range


For widths: 

• All models provide the reasonably good description of 
the measurement

EPJC 82 (2022) 335
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D-h correlations : Comparison with theoretical models

Yield

Width
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Two-particle azimuthal correlations between  baryon and 
charged particles

Λ+
c

• Higher yield observed for -trigger particle for the low-pT 
trigger and low-pT associated particles region.


• More populated peaks characterise the charm fragmentation 
in this pT region when it hadronizes into a baryon rather than 
into a meson.

Λ+
c

From the comparison of the Δ𝜑 shape :

D meson - h           vs.           baryon - h Λ+
c

EPJC 82 (2022) 335

a) different energy of the charm quark as a

consequence of a softer Λc fragmentation w.r.t D meson (hints in 

-jet FF measurement, Phys. Rev. D 109 (2024) 072005) 

b) decay of yet unobserved heavier charm-baryon states 
(SHM+RQM)

c) hadronization by coalescence

Λ+
c

Possible explanations :
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→ larger particle multiplicity in near-side 
jet with respect to D-h correlations for 
small pT trig

Near Side Away Side

-h correlations: Near- and away-side peak observablesΛ+
c

→ larger yields are also observed for the 
away-side, which tends to favour softer  
fragmentation w.r.t D meson

Λ+
c

Yield

Width



 - h correlations: Comparison with theoretical modelsΛ+
c

• Underestimation of associated particle 
production in the NS and AS regions in 
PYTHIA 8. 

• PYTHIA 8 CR-BLC modes, despite 
reproducing the /D0 pT-dependence, do 
not describe the -h correlation peak 
observables.

Λ+
c

Λ+
c
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Charm-to-baryon fragmentation 
not properly described by MC generators



 - h correlations: Comparison with theoretical modelsΛ+
c

Yields: 
• Increasing trend with increasing 

pT( ) 
• All models underestimate the 

measured near-side yields 
(including PYTHIA 8 with CR-
BLC modes)

Λ+
c

Widths: 
• Overall, all model predictions 

tend to overestimate the near-
side wdths (though experimental 
uncertainties are large)
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● HF - tagged jets: 
• D0 and  -jet momentum fraction generally consistent with theory

• Hint for softer  fragmentation in data for low pT,jet compared to D0


● HF correlations: 
• PYTHIA 8 and POWHEG+PYTHIA provide the best description of data for D-h correlation measurements

• Hint of softer fragmentation of charm baryon w.r.t charm mesons

• Observed discrepancies between - h measurements and PYTHIA 8 predictions


Λ+
c

Λ+
c

Λ+
c

Summary

What to expect from Runs 3 and 4? 
• Larger data sample and improved DCA resolution

• Expand the successful pp program to explore pQCD and 

hadronization mechanisms and modifications in central heavy-
ion collisions


• Study B-tagged jet production and HF-jet substructure
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ALICE3 Detector 
• Wide η range

• Excellent precision for secondary vertexing and PID.

• Correlation measurements in Pb-Pb collisions will be accurate 

enough to assess the effects of in-medium broadening and 
thermalisation.

Thank you



Backup



QCD Factorisation theorem



D0-jet production in pp collisions
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13 TeV / 5 TeV

R=0.2 / R=X
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Jet resolution parameter 
(R) allows us to explore the 
parton shower shape and 
access the interplay 
between perturbative and 
non-perturbative 
processes. 

The observed 
departure from unity of 

the cross-section 
ratios can be 
interpreted by 

the emission of QCD 
radiation.

Hardening of D0-jet 
transverse momentum 

distribution with increasing 
centre-of-mass energy



D0-jets momentum fraction

0.4 0.5 0.6 0.7 0.8 0.9 1

1

2

3

4

5

6

7

8

||ch
z

/d
N

d
je

ts
N

1
/

c < 7 GeV/
T,ch jet

p5 < 

c > 2 GeV/0T,D
p

ALICE

Tkcharged jets, anti-

R=0.2

 = 5.02 TeVspp, 

0.4 0.5 0.6 0.7 0.8 0.9 1

c < 10 GeV/
T,ch jet

p7 < 

c > 4 GeV/0T,D
p

0.4 0.5 0.6 0.7 0.8 0.9 1

c < 15 GeV/
T,ch jet

p10 < 

c > 5 GeV/0T,D
p

0.4 0.5 0.6 0.7 0.8 0.9 1

c < 50 GeV/
T,ch jet

p15 < 

c > 10 GeV/0T,D
p

POWHEG hvq + PYTHIA 8

PYTHIA 8 HardQCD Monash 2013

PYTHIA 8 SoftQCD Mode 2

0.4 0.5 0.6 0.7 0.8 0.9 1

2

4

M
C

/d
a
ta

0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0||ch
z

/d
N

d
je

ts
N

1
/

c > 2 GeV/0T,D
p

R=0.4

0.4 0.5 0.6 0.7 0.8 0.9 1

c > 3 GeV/0T,D
p

0.4 0.5 0.6 0.7 0.8 0.9 1

c > 5 GeV/0T,D
p

0.4 0.5 0.6 0.7 0.8 0.9 1

c > 5 GeV/0T,D
p

0.4 0.5 0.6 0.7 0.8 0.9 1

0.5
1.0
1.5
2.0

M
C

/d
a
ta

0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1 0.4 0.5 0.6 0.7 0.8 0.9 1

0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

1.0

1.5

2.0

2.5

3.0

3.5||ch
z

/d
N

d
je

ts
N

1
/

c > 2 GeV/0T,D
p

R=0.6

0.4 0.5 0.6 0.7 0.8 0.9 1

c > 3 GeV/0T,D
p

0.4 0.5 0.6 0.7 0.8 0.9 1

c > 5 GeV/0T,D
p

0.4 0.5 0.6 0.7 0.8 0.9 1

c > 5 GeV/0T,D
p

0.4 0.5 0.6 0.7 0.8 0.9 1
ch
||z

0.5
1.0
1.5
2.0

M
C

/d
a
ta

0.4 0.5 0.6 0.7 0.8 0.9 1
ch
||z

0.4 0.5 0.6 0.7 0.8 0.9 1
ch
||z

0.4 0.5 0.6 0.7 0.8 0.9 1
ch
||zALI-PUB-521234

• Dependence of momentum fraction on 
resolution parameter: 
• Smaller R → Dominated by heavy-

flavour hadron. Compatible with 
suppression of gluon emission at low 
angles 

• Larger R → Emissions at large angles 
are recovered 

• Hint of softer fragmentation in data 
compared to models for low pT, ch jet and 
large R. 
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pT, ch D0,  pT, ch jet

R


