

Exploring charm-quark fragmentation with correlation and jet measurements by ALICE

Samrangy Sadhu for the ALICE Collaboration University of Bonn, Germany

Heavy quarks: a unique probe of QGP

- Heavy quarks: charm and beauty, predominantly produced by the parton-parton hard scattering in hadronic collisions -> perturbative QCD can be applied.
- In heavy-ion collisions: a quark-gluon plasma (QGP) state is produced
 - -> Heavy quarks are produced before QGP formation ($t_{QGP} \sim 1$ fm/c and $t_Q = 1/2m_Q \leq 0.1$ fm/c)
 - -> Identity is preserved while traversing the medium
 - -> Experience the complete evolution of QGP medium

Charm $m_{\rm c} \sim 1.3 \; {\rm GeV}/{\rm c}^2$ *t*_c ~ 0.08 fm/*c*

Beauty $m_{\rm b} \sim 4.2 ~{\rm GeV/c^2}$ $t_b \sim 0.03 \, \text{fm/c}$

• Energy loss of partons traversing the QGP is expected to occur via both inelastic (radiative energy loss via medium-induced gluon radiation) and elastic (collisions with the QGP constituents) processes.

> Therefore, heavy quarks act as important tools for characterizing the medium formed in heavy-ion collisions.

Heavy Flavours: The Physics Behind the Exploration

pp collisions:

- Test pQCD calculations down to $p_T \approx 0$
- Study heavy-flavour quark production, fragmentation and hadronization
- Reference for p—Pb and Pb—Pb systems

p-Pb collisions:

- effects
- Possible collective effects

Production of heavy-quark hadrons can be calculated using the factorization approach:

$$\frac{\mathrm{d}\sigma^{\mathrm{H}_{c}}}{\mathrm{d}\sigma^{\mathrm{H}_{c}}_{p_{\mathrm{T}}}}(p_{\mathrm{T}};\mu_{F},\mu_{R}) = \mathrm{PDF}(x_{1},\mu_{F})\cdot\mathrm{PDF}(x_{2},\mu_{F})\otimes$$

Parton distribution functions (PDFs)

Pb-Pb collisions:

- Colour/mass dependence of in-medium energy loss
- Possible modification of the quark hadronization

Questioning the Universality: Insights from ALICE Measurements

Measurements of the baryon-to-meson yield ratio -> p_T -dependent enhancement of Λ_c^+/D^0 ratio in pp w.r.t. e+e-

Models based on fragmentation functions evaluated from e⁺e⁻ collisions underestimate the data (PYTHIA 8 Monash)

Different hadronization mechanisms proposed:

 Color reconnection beyond leading color (PYTHIA 8 CR Mode 2) Hadronization via coalescence and fragmentation in a thermalised system of gluons, light quarks and antiquarks (Catania, Quark (re)Combination Model

 Increased feed-down from an augmented set of excited charm baryons (Statistical Hadronisation model + Relativistic Quark model).

Diving Deeper: Further Investigation of Charm Fragmentation

Regarding fragmentation, additional insights compared to single-particle studies are offered by:

→ Charm-hadron tagged jets:

- → access to the original parton kinematics
- → constrain the fragmentation functions
- → Azimuthal correlations of charm hadrons with charged particles
 → description of the jet shape and its particle composition
 - → sensitivity to production mechanisms

The ALICE detector (Run 2)

The ALICE detector is excellent in reconstructing identified particles over a broad momentum range and in reconstructing primary and displaced secondary vertices.

 Inner Tracking System (vertexing, tracking, PID, $|\eta| < 0.9$)

- Time Projection Chamber (tracking, PID, $|\eta| < 0.9$)
- Time-Of-Flight detector (PID, $|\eta| < 0.9$)
- V0 detectors (multiplicity and event activity determination, triggering, $2.8 < \eta < 5.1, -3.7 < \eta < -1.7$

Slightly harder fragmentation in PYTHIA 8 Monash.

- PYTHIA 8 CR-BLC Mode 2
 - shows better agreement with

region.

Study of two-particle azimuthal correlations

The angular distribution of the final-state particles with respect to the direction of the tagged charmed hadron is studied, providing an insight into the fragmentation of the charm quark.

Fit function:

$$f(\Delta \varphi) = C + \frac{Y_{\rm NS} \beta}{2\alpha \Gamma(1/\beta)} \exp\left(-\frac{(\Delta \varphi)^{\beta}}{\alpha^{\beta}}\right) + \frac{Y_{\rm AS}}{\sqrt{2\pi\sigma_{\rm AS}^2}}$$

Characterization of the jet shape and its composition (for Leading Order $c\overline{c}$ production) :

- Near Side (NS): fragmentation of the tagged charm quark;
- Away Side (AS): fragmentation of the other charm quark;
- Transverse Region: sensitivity to underlying event

EPCJ 80 (2020) 979

Two-particle azimuthal correlations between D mesons and charged particles

Comparison of correlation distributions among different collision energies in pp collisions :

Compatibility found within uncertainties in all kinematic ranges.

D-h correlations : Near- and away-side peak observables

Increase of associated particles in NS and AS peaks with increasing **D**-meson p_{T} \rightarrow Due to the larger energy available to the parton → Characterization of particle multiplicity in jets

Decrease of the peak width with increasing **D**-meson p_{T}

→ Jet hard core more collimated due to larger parton Lorentz boost

No centre-of-mass energy dependence observed

D-h correlations : Comparison with theoretical models

EPJC 82 (2022) 335

Validation of parton-shower models and Monte-Carlo generators :

For yields:

- PYTHIA 8 and POWHEG+PYTHIA provide the best description
- G tends to underestimate the NS peak yield at low p_T (D) and at high p_T (assoc)
- **EPOS** overestimates the NS yields over the whole p_{T} range

For widths:

• All models provide the reasonably good description of the measurement

Two-particle azimuthal correlations between Λ_c^+ baryon and charged particles

From the comparison of the $\Delta \varphi$ shape :

- Higher yield observed for Λ_c^+ -trigger particle for the low- p_{\top} trigger and low- p_{\top} associated particles region.
- More populated peaks characterise the charm fragmentation in this p_T region when it hadronizes into a baryon rather than into a meson.

Possible explanations :

a) different energy of the charm quark as a

consequence of a softer Λ_c fragmentation w.r.t D meson (hints in

 Λ_c^+ -jet FF measurement, Phys. Rev. D 109 (2024) 072005)

b) decay of yet unobserved heavier charm-baryon states (SHM+RQM)

c) hadronization by coalescence

Λ_{c}^{+} -h correlations: Near- and away-side peak observables

Near Side

→ larger particle multiplicity in near-side jet with respect to D-h correlations for small *p*_T trig

away-side, which tends to favour softer Λ_c^+ fragmentation w.r.t D meson

Λ_c^+ - h correlations: Comparison with theoretical models

- Underestimation of associated particle production in the NS and AS regions in **PYTHIA 8.**
- PYTHIA 8 CR-BLC modes, despite reproducing the $\Lambda_c^+/D^0 p_T$ -dependence, do not describe the Λ_c^+ -h correlation peak observables.

Charm-to-baryon fragmentation not properly described by MC generators

Yields:

- $p_{T}(\Lambda_{c}^{+})$
- **BLC modes**)

Widths:

Λ_c^+ - h correlations: Comparison with theoretical models

Increasing trend with increasing

• All models underestimate the measured near-side yields (including PYTHIA 8 with CR-

• Overall, all model predictions tend to overestimate the nearside wdths (though experimental uncertainties are large)

• HF - tagged jets:

- D⁰ and Λ_c^+ -jet momentum fraction generally consistent with theory
- Hint for softer Λ_c^+ fragmentation in data for low $p_{T,jet}$ compared to D⁰
- HF correlations:

 - Hint of softer fragmentation of charm baryon w.r.t charm mesons
 - Observed discrepancies between Λ_c^+ h measurements and PYTHIA 8 predictions

What to expect from Runs 3 and 4?

- Larger data sample and improved DCA resolution
- Expand the successful pp program to explore pQCD and hadronization mechanisms and modifications in central heavyion collisions
- Study B-tagged jet production and HF-jet substructure

• PYTHIA 8 and POWHEG+PYTHIA provide the best description of data for D-h correlation measurements

ALICE3 Detector

- Wide n range
- Excellent precision for secondary vertexing and PID.
- Correlation measurements in Pb-Pb collisions will be accurate enough to assess the effects of in-medium broadening and thermalisation.

Backup

QCD Factorisation theorem

D⁰-jet production in pp collisions

- Dependence of momentum fraction on resolution parameter:
 - Smaller $R \rightarrow$ Dominated by heavyflavour hadron. Compatible with suppression of gluon emission at low angles
 - Larger $R \rightarrow$ Emissions at large angles are recovered
- Hint of softer fragmentation in data compared to models for low *p*_{T, ch jet} and large R.

