

Dissociation and Regeneration of Charmonia within microscopic Langevin simulations

QNP2024, July 10th 2024

In collaboration with Juan Torres-Rincon, Hendrik van Hees and Carsten Greiner

Naomi Oei

Motivation Heavy Quarkonia as Hard Probes

- Production in primordial hard collisions:
 - Sensitivity to initial conditions
- Measurement of quarkonium states:
 - conclusions about QGP properties, medium interactions
- J/ψ suppression: signal for deconfinement
- Possibility of regeneration processes at higher energies

Fokker-Planck equation

- Relativistic Boltzmann equation for the phase-space distribution of the heavy quarks: $\left|\frac{\partial}{\partial t} + \frac{p}{E}\frac{\partial}{\partial x} + \frac{p}{E}\frac{\partial}{\partial x}\right|$
- Assumption: no mean-field effects, uniform medium
- Reduction to Fokker-Planck equation:

$$\frac{\partial}{\partial t} f_Q(\boldsymbol{p}, t) = \frac{\partial}{\partial p_i} \left\{ \frac{A_i(\boldsymbol{p})}{Q} f_Q(\boldsymbol{p}, t) + \frac{\partial}{\partial p_j} [\boldsymbol{B}_i] \right\}$$

Approximation: $A(p,T) \equiv \gamma(T), B_0(p,T) = B_1(p,T) \equiv D(p,T)$

 \blacktriangleright Connected via fluctuation-dissipation relation: $D[E(p)] = \gamma E(p)T$

$$-\mathbf{F}\frac{\partial}{\partial \mathbf{p}}\bigg]f_{Q}(t,p,x) = C[f_{Q}]$$

 $B_{ij}(\boldsymbol{p})f_Q(\boldsymbol{p},t)]$

• With drag and diffusion coefficients $A_i(p,T) = A(p,T)p_i$ and $B_{ij}(p,T) = B_0(p,T)\left(\delta_{ij} - \frac{p_i p_j}{p^2}\right) + B_1(p,T)\frac{p_i p_j}{p^2}$,

- Fokker-Planck equation realized with Langevin simulations
- Relativistic Langevin equation:

 $\triangleright \rho$: Gaussian-distributed white noise

$$\frac{dp}{dt} = -\gamma p + \xi$$

Corresponding update steps for coordinate and momentum in time interval dt:

 $dx_j = \frac{p_j}{F}dt$

 $dp_i = -\gamma p_i dt + \sqrt{2\gamma ET dt \rho_i}$, (for V = 0)

Potential of the Heavy Quarks

- ► Formalism to describe heavy quarks in Abelian plasma by Blaizot et al., Blaizot et al., Nucl.Phys.A 946 (2016) 49-88
- Idea: effective theory of non-relativistic HQs in plasma of relativistic particles
- Influence functional in infinite-mass limit and large time limit: interpretation as complex potential:

$$\mathcal{V}(r) = -\frac{g^2}{4\pi}m_D - \frac{g^2}{4\pi}\frac{\exp(-m_D r)}{r} - i\frac{g^2 T}{4\pi}\phi(m_D r) , r = |\mathbf{r} - \bar{\mathbf{r}}|$$

S

Potential of the Heavy Quarks

Real part: Screened Coulomb potential with Cut-Off 4 GeV and running coupling: $g^2 = 4\pi\alpha_s = \frac{4\pi\alpha_s(T_c)}{1+C \ln(T/T_c)}$ $m_c = 1.8 \ GeV/c^2, T_c = 160 \ MeV,$ $\alpha_{s}(T_{c}) = 0.7, C = 0.76$ Less deeply bound states with increasing temperature

Drag Coefficient

Bound State Formation in Box Simulation

Energy distribution in equilibrium

- - bound state if energy of charm-anticharm pair < 0
 - Classical density of states:

$$\frac{dN}{dE_{rel}} = (4\pi)^2 (2\mu)^{\frac{3}{2}} C \int_0^R dr r^2 \sqrt{E_{rel} - V(r)} \exp\left(-\frac{1}{2} e^{-\frac{1}{2}} e^{-\frac{1}{$$

Box simulation with 1 $c\bar{c}$ -pair at T = 160 MeV

leads to right equilibrium density of states 2

Bound State Formation in Box Simulation

Time evolution of fraction of bound states

fraction of bound states

9

Comparison to Statistical Hadronization Model

Charmonium multiplicity according to particle number in Grand-Canonical Ensemble:

$$N_{c\bar{c}} = \sum_{i} \lambda_{i} d_{i} \frac{V}{2\pi^{3/2}} (m_{i}T)^{3/2} e^{-m_{i}T}$$

with $i = \{\eta_c, J/\psi, \psi', \chi_c\}, \lambda_i = \lambda_c^2$

ightarrow Charmonium yield scales with N_c^2

Charmonium yield at T = 160 MeV, Sidelength of Box: 10 fm

Scaling of charmonium-yield with number of pairs in the system

Relaxation time

Equilibration for different scalings of drag coefficient γ (T = 160 MeV)

fraction of bound states

- Faster equilibration for stronger drag force ▶ 2 intertwined mechanisms:
 - 1. Charm momentum relaxation towards thermal value: $\tau_{eq} = 1/\gamma$
 - 2. Full equilibration = time-independent number of bound states
 - dominated by the time scales of the potential

Elliptic Fireball

Elliptic parametrisation of transverse direction:

H. van Hees, M. He, and R. Rapp, Nuclear Physics A, (2015) Vol. 933

Volume of medium in Fireball:

with long and short semi-axes $a(\tau)$, $b(\tau)$ semi-axes:

$$a(\tau) = a_0 + \frac{1}{a_a} \left(\sqrt{1 + a_a^2 \tau^2} - 1 \right), \ b(\tau) = b_0 + \frac{1}{a_b} \left(\sqrt{1 + a_b^2 \tau^2} - 1 \right)$$

• a_a, a_b : accelerations chosen to fit to p_T -spectra and elliptic flow of light hadrons

 x^2

$$\frac{x^2}{b^2(\tau)} + \frac{y^2}{a^2(\tau)} \le 1$$

https://irfu.cea.fr/dap/en/Phocea/Vie des labos/Ast/ast.php?t=fait marguant&id ast=4733

$V(\tau) = \pi \cdot a(\tau)b(\tau)(z_0 + c\tau) , \quad z_0 = c\tau_0$

Elliptic Fireball

Transverse velocity field at midrapidity with confocal elliptical coordinates:

- flow
- Resulting 3D-flow field: $v_x = \frac{\tau}{t} v_b(\tau) \cos(v) \frac{r}{r_R}, \quad v_y$
- Initial momentum distribution of heavy quarks in the fireball from PYTHIA
- Initial spatial distribution according to Glauber model

 $\mathbf{v}_{\perp} = \frac{r}{r_{P}} \left(\frac{v_{b}(\tau) \cos(v)}{v_{a}(\tau) \sin(v)} \right)$

Extension to 3D and finite rapidity: Superimpose model with boost-invariant Bjorken

$$= \frac{\tau}{t} v_a(\tau) \sin(v) \frac{r}{r_B}, \quad v_z = \tanh(\eta)$$

Elliptic Flow v_2 : Charm Quarks

Initial momentum distribution from PYTHIA

 $v_2 = \left\langle \frac{1}{2} \right\rangle$

RHIC, 20-40% Centrality

LHC, 20-40% Centrality

Elliptic Flow v_2 : Charmonium

Initial momentum distribution from PYTHIA

162301.

ALICE Collaboration (2013). J/Psi Elliptic Flow in Pb-Pb Collisions at $\sqrt{s_{NN}}$ = 2.76 TeV. HEPData (collection).

→ working on increasing the statistics

Conclusions & Outlook

Summary:

- Box simulations \rightarrow correct equilibrium limit, agreement with SHM
 - Bound-state formation, dissociation and regeneration occurs in the expected manner
- Implementation of fireball model to describe dynamical expansion
 - $\bullet v_2$ of charm and charmonium
- Future extensions:
- Nuclear modification factor R_{AA}
- ▶ using PYTHIA:
 - include primordial charmonium
 - Expand to bottomonium sector

Backup

First half of coordinate update step

 $\vec{r}_{c,i+\frac{1}{2}} =$

• Calculation of Potential for Momen $\overrightarrow{F}(\overrightarrow{r}_{c,i})$

Boost to Medium Rest Frame

 $p_i^* = p_i - \gamma \beta_i E +$

$$= \vec{r}_{c,i} + \frac{\vec{p}_{c,i}}{2E_c} \Delta t$$
Stum Update

$$(r_{\pm\frac{1}{2}}, \vec{r}_{\bar{c},i+\frac{1}{2}})\Delta t$$

$$(\gamma - 1) \frac{\beta_i}{\vec{\beta}^2} \vec{\beta} \vec{p}, \quad i = 1, 2, 3$$

- Analytic form of momentum update step:
- covariance matrix C_{ik}
- Determination of momentum argument in C_{ik} :
- $\Rightarrow \xi = 0, \frac{1}{2}, 1$ for pre-point, midpoint and post-point realisation
- In this work: post-point scheme,

$dp_i = -\gamma p_i dt + \sqrt{dt} C_{ik} \rho_k$

Stochastic process dependent on specific choice of the momentum argument of the

$C_{jk} \rightarrow C_{jk}(t, \mathbf{x}, \mathbf{p} + \xi d\mathbf{p})$

 $C_{jk} \rightarrow C_{jk}(t, \boldsymbol{x}, \boldsymbol{p} + d\boldsymbol{p})$

General dissipation-fluctuation relation between drag and diffusion coefficient in statistical equilibrium: $A_{i}(\boldsymbol{p},T) = B_{ij}(\boldsymbol{p},T) \frac{1}{T} \frac{\partial E(\boldsymbol{p})}{\partial p_{i}} - \frac{\partial B_{ij}(\boldsymbol{p},T)}{\partial n_{j}}$

with a diagonal approximation of the diffusion coefficient, $B_0(p,T) = B_1(p,T) \equiv D(p,T)$:

▶ with

$$\Gamma(p) = \frac{1}{E(p)} \left(\frac{D[E(p)]}{T} - (1 - \xi) \frac{\partial D[E(p)]}{\partial E} \right)$$

•dependent on choice of ξ

• for post-point, $\xi = 1$: simple form of equilibrium condition:

 $D[E(p)] = \Gamma(p)E(p)T$

 $A(p) = \frac{1}{E(p)} \left(\frac{D[E(p)]}{T} - \frac{\partial D[E(p)]}{\partial E} \right)$

•momentum update:

Two-step computation:

I. Calculation of dp_i of pre-point scheme, $dp_i = -\gamma p_i dt + \sqrt{2dtD(p)}\rho_i$

II. Use result for argument |p + dp| of D to evaluate the second part of the postpoint momentum update, $dp_i^{diff} = \sqrt{2dtD(|\mathbf{p} + d\mathbf{p}|)}\rho_i$

III. Complete momentum update: $dp_j = dp_j^{drag} + dp_j^{diff}$ with dp_j^{drag} from I.

$dp_{i} = -\gamma p_{i}dt + \sqrt{2dtD(|\mathbf{p} + d\mathbf{p}|)}\rho_{i} = -\gamma p_{i}dt + \sqrt{2\gamma ETdt}\rho_{i}$

- Boost back to computational frame
- Complete momentum update:

$$\vec{p}_{c,i+1} = \vec{p}_{c,i} + \vec{F}(\vec{r}_{c,i+\frac{1}{2}}, \vec{r})$$

Second half of coordinate update step:

$$\vec{r}_{c,i+1} = \vec{r}_{c,i+\frac{1}{2}} + \frac{\vec{p}_{c,i+1}}{2E} \Delta t$$

 $\vec{r}_{\bar{c},i+\frac{1}{2}})\Delta t - \gamma \vec{p}_{c,i}\Delta t + \sqrt{2ET\gamma\Delta t}\rho$

Potential of the Heavy Quarks

- Formalism to describe heavy quarks in Abelian plasma by Blaizot et al.
- Idea: effective theory of non-relativistic HQs in plasma of relativistic particles
- Influence functional in infinite-mass limit and large time limit:

$$\Phi[\boldsymbol{Q}] \simeq g^2(t_f - t_i) \int \frac{d^3 \boldsymbol{k}}{(2\pi)^3}$$

- → When considering equation of motion for correlator $G^>(t_f, Q_f | t_i Q_i)$ at large time: interpretation as complex potential $\mathscr{V}(\mathbf{r})$
- $\frac{1}{2}(1 exp[ik(r \bar{r})]\Delta(0,k))$

Potential of the Heavy Quarks

Real part:

Imaginary part:

$W(r) = -\Delta^{<}(0,r) =$

with the propagator $\Delta(0,\mathbf{r}) = \Delta^{R}(0,\mathbf{r}) + i\Delta^{<}(0,\mathbf{r})$ $\mathscr{V}(\boldsymbol{r}) = -g^2 \left[V(\boldsymbol{r}) - V_{ren}(0) \right] - ig^2 \left[W(\boldsymbol{r}) - W(0) \right]$

 $V(\mathbf{r}) = -\Delta^{R}(0,\mathbf{r}) = -\left[\frac{d\mathbf{k}}{(2\pi)^{3}}e^{i\mathbf{k}\mathbf{r}}\Delta^{R}(\omega=0,\mathbf{k})\right]$

$$-\int \frac{dk}{(2\pi)^3} e^{ikr} \Delta^{<}(0,k)$$

Heavy Quarks in Abelian Plasma

• Complex potential for $c\bar{c}$ -pair after evaluation of integrals:

$$\mathcal{V}(r) = -\frac{g^2}{4\pi}m_D - \frac{g^2}{4\pi}\frac{\exp(-m_D r)}{r} - i\frac{g^2 T}{4\pi}\phi(m_D r)$$

With
$$\phi(x) = 2 \int_0^\infty dz \frac{z}{(z^2 + 1)^2} \left[1 - \frac{\sin(z)}{zx} \right]$$

The Drag and diffusion coefficients derived W:

$$\mathscr{H}_{\alpha\beta}(\boldsymbol{s}) = \frac{\partial^2 W(\boldsymbol{s})}{\partial r_{\alpha} \partial r_{\beta}},$$

and using $g^2 \mathcal{H}(0)_{\alpha\beta} = 2MT\gamma \delta_{\alpha\beta}$

Blaizot et al., Nucl.Phys.A 946 (2016) 49-88

x)

Drag and diffusion coefficients derived from potential from the second derivative of

Testing the Model Equilibrium Conditions in Box Calculations

Single $c\bar{c}$ -pair in box calculation with T = 180 MeV and $m_c = 1.8 GeV/c^2$

Momentum distribution in equilibrium limit (Boltzmann-Jüttner):

$$f_{eq}(\boldsymbol{p}) \propto \exp\left[-\frac{E(\boldsymbol{p})}{T}\right]$$

Elliptic Fireball

Parametrisation of hadronic freeze-out

In the differential momentum spectrum of a particle:

$$\frac{dN}{p_T dp_T d\phi_p dy} = \frac{2g}{(2\pi)^3} \tau_f \ m_T \ e^{\frac{\mu}{T_f}} \int r dr \int d\phi_s K_1(m_T, T, \beta_T) e^{\frac{p_T}{T_f \sinh(\rho(r, \phi_s)} \cos(\phi_p - \phi_b))}$$

 $\bullet T_f$: freeze-out temperature, ϕ_b : azimuthal angle of the boost, K_1 : Bessel function •transverse rapidity $\rho(r, \phi_s)$: function of radius r and spatial azimuthal angle ϕ_s •Elliptic flow:

$$v_2(p_T) = \frac{\int_0^{2\pi} dq}{\int_0^{2\pi} dq}$$

Retière, Lisa, Physical Review C, 70 (2004)

 $d\phi_p \cos(2\phi_p) \frac{dN}{p_T dp_T d\phi_p dy}$ $c 2\pi$ $d\phi_p \frac{dN}{p_T dp_T d\phi_p dy}$

He, Fries, Rapp, Physical Review C, 82 (2010)

RHIC (20-40%), v_2

Choice of parameters in fireball model by fitting results to experimental data

• Elliptic flow v_2 of K_S and ϕ from STAR

28

RHIC (20-40%), p_T

- p_T -spectra of p and ϕ from STAR

Choice of parameters in fireball model by fitting results to experimental data

29

5

LHC (0-20%), v_2

• Comparison of elliptic flow spectra from simulation to data from ϕ and Ξ from ALICE

LHC (0-20%), p_T

• Comparison of p_T - spectra from simulation to data from π and Ξ from ALICE

LHC (20-40%), v_2

• Comparison of elliptic flow spectra from simulation to data from π and Ξ from ALICE

LHC (20-40%), p_T

• Comparison of p_T - spectra from simulation to data from π and Ξ from ALICE

Testing the Model

Temperature of the Fireball

LHC, 0-20% LHC, 20-40% RHIC, 20-40%

Sequential freeze-out

$T_{ch} = 160 MeV$

- Isentropic expansion towards kinetic freeze-out
- Extrapolation to temperature in QGP-phase
- Exponential decrease of T until T_{ch}

Lorentz Boost to Moving Medium

 p_z distribution

ytical)	Single $c\bar{c}$ -pair in box calculation
	with $T = 180 MeV$ and
	$m_c = 1.5 \ GeV/c^2$
	Constant flow-field $v = (0, 0, 0.9)$
	Boltzmann-Jüttner distribution:
	$f_{eq}(\boldsymbol{p}) \propto \exp\left(-\frac{E(\boldsymbol{p})}{T}\right)$
10	

Relative energy of a $c\bar{c}$ -pair

Energy distribution in equilibrium

Relative energy of $c\bar{c}$ -pair:

$$E_{rel} = E_c + E_{\bar{c}} + V(|\mathbf{r}_c - \mathbf{r}_{\bar{c}}|) - E_{tot}$$
$$= \sqrt{m_c^2 + \mathbf{p}_c^2} + \sqrt{m_{\bar{c}}^2 + \mathbf{p}_{\bar{c}}^2} + V(r, T) - \sqrt{(m_c + m_{\bar{c}})^2 + (\mathbf{p}_c + \mathbf{p}_{\bar{c}})^2}$$

In com-system $((p_c + p_{\bar{c}}) = 0)$ equivalent to

$$E_{rel} = m_{0,cms} + V(r,T) - (m_c + m_{\bar{c}})$$

With $p_{tot}^{\mu} p_{\mu,tot} = (E^c + E^{\bar{c}})^2 - (p_c + p_{\bar{c}})^2 = m_{0,cms}^2$

Thermalization of bound-state yield

Detailed Balance

Single $c\bar{c}$ -pair in box calculation: 1. Initialisation as separate quarks 2. Initialisation as bound state In the long-time limit the same equilibrium is reached

Input number $N_{c\bar{c}}$ for simulation

$$N_{c\bar{c}} = T_{AA}(b) \ \sigma c\bar{c} \quad (1)$$

• Overlap function
$$T_{AA}(b) = \int_{-\infty}^{\infty} dz \rho_A(z)$$
 with
 $\rho_A(r) = \frac{\rho_0}{1 + \exp\left(\frac{r - r_0}{a}\right)}$

- Run PYTHIA with number of pairs according to (1)
- Number of produced charm quarks:

RHIC, 20-40%	LHC, 0-20%	LHC, 20-40%
~ 5	~ 104	~ 39

Comparison to Grand-Canonical Ensemble

Statistical Hadronization Model, T = 160 MeV

Particle number in Grand-Canonical Ensemble

N = T-

• non-relativistic classical limit, approximation of small particle numbers:

$$N = dV \left(\frac{mT}{2\pi}\right)^{\frac{3}{2}} \lambda e^{-m/T}$$

 $J/\psi \rightleftharpoons c + \bar{c}: \ \mu_{J/\psi} = 2\mu_c \longrightarrow \lambda_{J/\psi} = \lambda_c^2$

 $\rightarrow J/\psi$ Multiplicity:

$$N_{J/\psi} = \lambda_c^2 \ d_{J/\psi} \frac{V}{2\pi^{3/2}} \ \left(m_{J/\psi}T\right)^{3/2} e^{-\frac{1}{2}k^2}$$

$$\frac{\partial \ln Z}{\partial \mu}, \text{ with } \ln Z = a \sum_{\alpha} \left(1 + a e^{-(E_{\alpha} - \mu)/T}\right)$$

with the fugacity $\lambda = e^{\mu/T}$

 $\exp(-m_{J/\psi}T)$, with $d_{J/\psi} = 3$, $m_{J/\psi} = \langle 2m_c + E_{bin} \rangle$

Elliptic Flow v_2 : Charm Quarks, 5 Pairs

Initial momentum distribution given by parametrization to fit charm-quark spectra from PYTHIA

Elliptic Flow v_2 for different scalings of the drag coefficient

 J/ψ , RHIC & LHC

Strong Coupling of Potential Influence on Number of Bound States

QQbar Potential

Strong Coupling of Potential Comparison $\alpha_s = 0.5$ vs. $\alpha_s = 0.7$

QQbar Potential 0.0 -0.2 -0.4 -g²V(T,r) (GeV) -0.6 -0.8 -1.0T=350 -1.2 T=200 T=250 -1.4 T=160 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 r (fm)