A potential approach to the $X(3872)$ thermal behavior

Miguel Ángel Escobedo

Universitat de Barcelona

International Conference on Quarks and Nuclear Physics

Grant PID2022-136224NB-C21 funded by:
Outline

1. Introduction
2. Theoretical framework
3. Results
4. Conclusions
There are Quarkonium-like particles that can not be explained by the simple quark-antiquark model.

Picture taken from Physics Reports 873 (2020)
Quarkonia exotics

- There are Quarkonium-like particles that can not be explained by the simple quark-antiquark model.
- Among them, we focus on the \(X(3872) \), whose internal structure is still a matter of debate.

Picture taken from Physics Reports 873 (2020)
There are Quarkonium-like particles that can not be explained by the simple quark-antiquark model.

Among them, we focus on the $X(3872)$, whose internal structure is still a matter of debate.

There are two competing models. The tetraquark and the hadronic molecule.
Quarkonia exotics

![Diagram of hadronic objects](https://www.fz-juelich.de/en/ias/ias-4/research/exotic-hadrons/exotics_pad.jpg)

How can we get information about the internal structure of the X(3872)?

- Quantum numbers
The internal structure of the $X(3872)$

How can we get information about the internal structure of the $X(3872)$?

- Quantum numbers
- Spectroscopy
The internal structure of the $X(3872)$

How can we get information about the internal structure of the $X(3872)$?

- Quantum numbers
- Spectroscopy
- Decays
The internal structure of the $X(3872)$

How can we get information about the internal structure of the $X(3872)$?

- Quantum numbers
- Spectroscopy
- Decays
- **Studying how a thermal medium modifies its properties**
How can we get information about the internal structure of the $X(3872)$?

- Quantum numbers
- Spectroscopy
- Decays
- Studying how a thermal medium modifies its properties

Picture taken from Phys.Rev.Lett. 128 (2022) 3, 032001
Conventional quarkonium in heavy-ion collisions

- Improved theoretical understanding in recent years.

Picture taken from Phys. Rev. D 108 (2023) 1, L011502
Conventional quarkonium in heavy-ion collisions

- Improved theoretical understanding in recent years.
- The heavy quarkonium potential has both a real and an imaginary part.

Picture taken from Phys.Rev.D 108 (2023) 1, L011502
Conventional quarkonium in heavy-ion collisions

- Improved theoretical understanding in recent years.
- The heavy quarkonium potential has both a real and an imaginary part.
- The origin of the imaginary part is the collision of quarkonium with medium particles.

Picture taken from Phys.Rev.D 108 (2023) 1, L011502
Conventional quarkonium in heavy-ion collisions

- Improved theoretical understanding in recent years.
- The heavy quarkonium potential has both a real and an imaginary part.
- The origin of the imaginary part is the collision of quarkonium with medium particles.
- In some limits, it is a good approximation to model quarkonium using a Schrödinger equation with a complex potential.

Picture taken from Phys.Rev.D 108 (2023) 1, L011502
Our aim is to study how the potential of the $X(3872)$ is modified in a thermal medium.
Our aim is to study how the potential of the $X(3872)$ is modified in a thermal medium.

We assume that it is a tetraquark. In the future, we plan to do a similar study assuming that it is an hadronic molecule.
Our aim is to study how the potential of the $X(3872)$ is modified in a thermal medium.

We assume that it is a tetraquark. In the future, we plan to do a similar study assuming that it is an hadronic molecule.

It is challenging because non-perturbative physics has a prominent role in exotic quarkonia.
Our aim is to study how the potential of the $X(3872)$ is modified in a thermal medium.

We assume that it is a tetraquark. In the future, we plan to do a similar study assuming that it is an hadronic molecule.

It is challenging because non-perturbative physics has a prominent role in exotic quarkonia.

Due to this, our aim is to obtain qualitative results. We use as insights results from perturbative computations, lattice QCD and the large N_c limit.
1 Introduction

2 Theoretical framework

3 Results

4 Conclusions
The Born-Oppenheimer approximation

- We assume that heavy quarks move non-relativistically around the center-of-mass, with velocity v.

$\Lambda_{\text{QCD}} \gg E \sim m_Q v^2$. From the point of view of the heavy quarks, the light particles move very fast.

The effect of light particles and gluons can be encoded in a potential computed assuming that the heavy quarks are frozen and separated a given distance r.

Two step-approximation:

▶ Compute the potential taking the heavy quarks as static color sources.
▶ Solve the Schrödinger equation.
The Born-Oppenheimer approximation

- We assume that heavy quarks move non-relativistically around the center-of-mass, with velocity v.
- $\Lambda_{QCD} \gg E \sim m_Q v^2$. From the point of view of the heavy quarks, the light particles move very fast.
The Born-Oppenheimer approximation

- We assume that heavy quarks move non-relativistically around the center-of-mass, with velocity v.
- $\Lambda_{QCD} \gg E \sim m_Q v^2$. From the point of view of the heavy quarks, the light particles move very fast.
- The effect of light particles and gluons can be encoded in a potential computed assuming that the heavy quarks are frozen and separated a given distance r.

Two step-approximation:

- Compute the potential taking the heavy quarks as static color sources.
- Solve the Schrödinger equation.
The Born-Oppenheimer approximation

- We assume that heavy quarks move non-relativistically around the center-of-mass, with velocity v.
- $\Lambda_{QCD} \gg E \sim m_Q v^2$. From the point of view of the heavy quarks, the light particles move very fast.
- The effect of light particles and gluons can be encoded in a potential computed assuming that the heavy quarks are frozen and separated a given distance r.
- Two step-approximation:
 - Compute the potential taking the heavy quarks as static color sources.
 - Solve the Schrödinger equation.
The Born-Oppenheimer approximation
The $T = 0$ potential

- Ideally, we would like to use a lattice QCD potential for the tetraquark as starting point.
The $T = 0$ potential

- Ideally, we would like to use a lattice QCD potential for the tetraquark as starting point.
- However, it is not yet available. Computations with dynamical light quarks are expensive.
The $T = 0$ potential

- Ideally, we would like to use a lattice QCD potential for the tetraquark as starting point.
- However, it is not yet available. Computations with dynamical light quarks are expensive.
- Instead, we use hybrid data. We then make the approximation that the tetraquark potential would behave qualitatively similar to the hybrid potential.
The $T = 0$ potential

- Ideally, we would like to use a lattice QCD potential for the tetraquark as starting point.
- However, it is not yet available. Computations with dynamical light quarks are expensive.
- Instead, we use hybrid data. We then make the approximation that the tetraquark potential would behave qualitatively similar to the hybrid potential.
- Single channel approximation. We assume that the heavy quarks do not contribute to the spin of the tetraquark.
The $T = 0$ potential

- Ideally, we would like to use a lattice QCD potential for the tetraquark as starting point.
- However, it is not yet available. Computations with dynamical light quarks are expensive.
- Instead, we use hybrid data. We then make the approximation that the tetraquark potential would behave qualitatively similar to the hybrid potential.
- Single channel approximation. We assume that the heavy quarks do not contribute to the spin of the tetraquark.
The $T = 0$ potential

This potential is well fitted by the formula

$$V(r, 0) = \frac{A_{-1}}{r} + A_0 + A_2 r^2.$$

Lattice data is not sensitive to large r behavior. But, using Effective String Theory results, we know that at very large r it only grows linearly.
The finite T potential

The real part

We use the following assumption

$$V(p) = \frac{V_{\text{vac}}(p)}{\epsilon(p, m_D)},$$

where ϵ is the medium permittivity in the HTL approximation and m_D is the Debye mass.

$$\Re[V(r, m_D)] = A_1 \left(m_D + \frac{e^{-m_D r}}{r} \right) + A_0 + A_2 \left[\frac{6}{m_D^2} (1 - e^{-m_D r}) - \left(2r^2 + \frac{6r}{m_D} \right) e^{-m_D r} \right]$$

Rationale

This model was able to describe lattice quarkonium potential at finite T using m_D as a fitting parameter (Phys. Rev. D 101(5), 056010 (2020)).
The finite T potential

The real part

We use the following assumption

$$V(p) = \frac{V_{vac}(p)}{\epsilon(p, m_D)},$$

where ϵ is the medium permittivity in the HTL approximation and m_D is the Debye mass.

$$\Re [V(r, m_D)] = A_{-1} \left(m_D + \frac{e^{-m_D r}}{r} \right) + A_0$$

$$+ A_2 \left[\frac{6}{m_D^2} (1 - e^{-m_D r}) - \left(2r^2 + \frac{6r}{m_D} \right) e^{-m_D r} \right]$$

Rationale

This model was able to describe lattice quarkonium potential at finite T using m_D as a fitting parameter (Phys. Rev. D 101(5), 056010 (2020)).
The finite T potential

The real part

The finite T potential

The real part

\[
V(\text{GeV}) \quad m_D = 1.2 \text{ GeV} \\
\text{solid line} \\
V(\text{GeV}) \quad m_D = 0.8 \text{ GeV} \\
\text{dashed line} \\
V(\text{GeV}) \quad m_D = 0.4 \text{ GeV} \\
\text{dotted line} \\
\text{vacuum (} m_D = 0 \text{)} \\
\text{dashed-dotted line}
\]

\[r \text{ (fm)} \]

0.0 0.2 0.4 0.6 0.8 1.0

0.4
0.6
0.8
1.0

M. A. Escobedo (UB)
The finite T potential

The imaginary part

The imaginary part of the potential of conventional quarkonium has the following properties:

At short distances it goes like r^2 because the medium sees quarkonium as a small dipole. At long distances, the heavy quarks are not correlated. Therefore, the imaginary part of the potential is equal to $-i$ times the decay width of a single heavy quark. Between these two limits it is a smoothly increasing function.
The imaginary part of the potential of conventional quarkonium has the following properties:

- At short distances it goes like r^2 because the medium sees quarkonium as a small dipole.
The imaginary part of the potential of *conventional* quarkonium has the following properties:

- At short distances it goes like r^2 because the medium sees quarkonium as a small dipole.
- At long distances, the heavy quarks are not correlated. Therefore, the imaginary part of the potential is equal to $-i$ times the decay width of a single heavy quark.
The finite T potential

The imaginary part

The imaginary part of the potential of conventional quarkonium has the following properties:

- At short distances it goes like r^2 because the medium sees quarkonium as a small dipole.
- At long distances, the heavy quarks are not correlated. Therefore, the imaginary part of the potential is equal to $-i$ times the decay width of a single heavy quark.
- Between these two limits it is a smoothly increasing function.
The imaginary part

For example, in the HTL approximation

$$\Im V(r) = -\alpha_s C_F T \phi(m_D r).$$
The finite T potential

The imaginary part

In a tetraquark state treated in the BO approximation, the heavy quarks are in an octet state.

- When $r \to 0$ the medium sees the heavy quark pair as a non-relativistic heavy gluon. The imaginary part of the potential will be $-i/2$ times the decay width of a heavy gluon.
The finite T potential

The imaginary part

In a tetraquark state treated in the BO approximation, the heavy quarks are in an octet state.

- When $r \to 0$ the medium sees the heavy quark pair as a non-relativistic heavy gluon. The imaginary part of the potential will be $-i/2$ times the decay width of a heavy gluon.
- At large distances the two quarks are uncorrelated. Same as in the color singlet case.
The finite T potential

The imaginary part

In a tetraquark state treated in the BO approximation, the heavy quarks are in an octet state.

- When $r \rightarrow 0$ the medium sees the heavy quark pair as a non-relativistic heavy gluon. The imaginary part of the potential will be $-i/2$ times the decay width of a heavy gluon.

- At large distances the two quarks are uncorrelated. Same as in the color singlet case.

- At intermediate distances we expect that the imaginary part of the potential is a smooth function that interpolates between the two regimes.

In the large N_c limit the decay width of a heavy gluon is equal to that of two heavy quarks. Therefore, we can take the imaginary part of the potential to be a constant.
The finite T potential

The imaginary part

In a tetraquark state treated in the BO approximation, the heavy quarks are in an octet state.

- When $r \to 0$ the medium sees the heavy quark pair as a non-relativistic heavy gluon. The imaginary part of the potential will be $-i/2$ times the decay width of a heavy gluon.
- At large distances the two quarks are uncorrelated. Same as in the color singlet case.
- At intermediate distances we expect that the imaginary part of the potential is a smooth function that interpolates between the two regimes.
- In the large N_c limit the decay width of a heavy gluon is equal to that of two heavy quarks.
The finite T potential

The imaginary part

In a tetraquark state treated in the BO approximation, the heavy quarks are in an octet state.

- When $r \to 0$ the medium sees the heavy quark pair as a non-relativistic heavy gluon. The imaginary part of the potential will be $-i/2$ times the decay width of a heavy gluon.
- At large distances the two quarks are uncorrelated. Same as in the color singlet case.
- At intermediate distances we expect that the imaginary part of the potential is a smooth function that interpolates between the two regimes.
- In the large N_c limit the decay width of a heavy gluon is equal to that of two heavy quarks.
- Therefore, we can take the imaginary part of the potential to be a constant.
The Decay Width

\[\Gamma = A_{-1} T + A_2 \frac{T}{m_D^3}. \]
The Decay Width

\[\Gamma = A_{-1} T + A_2 \frac{T}{m_D^3}. \]

- It is a function of the same constants that appear in the real part of the potential.
The Decay Width

\[\Gamma = A_{-1} T + A_2 \frac{T}{m_D^3}. \]

- It is a function of the same constants that appear in the real part of the potential.
- Dimensional analysis.
The Decay Width

\[\Gamma = A_{-1} T + A_2 \frac{T}{m_D^3}. \]

- It is a function of the same constants that appear in the real part of the potential.
- Dimensional analysis.
- It is a educated guess. However, note that our aim is to get a qualitative understanding.
Outline

1. Introduction
2. Theoretical framework
3. Results
4. Conclusions
The dissociation temperature

- Obtained by solving the Schrödinger equation using the complex potential.

Since the imaginary part is a constant, it factors out. The dissociation temperature is the one in which we can no longer find bound state solutions. In our case, we obtain $T_d \sim 250$ MeV.
The dissociation temperature

- Obtained by solving the Schrödinger equation using the complex potential.
- Since the imaginary part is a constant, it factors out.
The dissociation temperature

- Obtained by solving the Schrödinger equation using the complex potential.
- Since the imaginary part is a constant, it factors out.
- The dissociation temperature is the one in which we can no longer find bound state solutions. In our case, we obtain $T_d \sim 250 \text{ MeV}$.
Mean radius vs Debye mass

\[m_D \text{ (GeV)} \]

\[\text{MSR (fm)} \]

\[m_D \]

\[1/m_D \]

M. A. Escobedo (UB)
Survival probability

We consider:

\[S(t) = \exp\left\{ -\int_{t_0}^{t} \Gamma(T(\tau), \tau) \, d\tau \right\} \]
Survival probability

We consider:

- A Bjorken expansion starting at $t_0 = 0.6 \text{ fm}$.

$S(t) = \exp\left[-\int_{t_0}^{t} \Gamma(T(\tau), \tau) d\tau\right]$,

M. A. Escobedo (UB)
Survival probability

We consider:

- A Bjorken expansion starting at $t_0 = 0.6\,\text{fm}$.
- A linear relation between T and m_D.

Survival probability $S(t) = \exp[-\int_{t_0}^t d\tau \Gamma(T(\tau), \tau)]$,

M. A. Escobedo (UB)
Survival probability

We consider:

- A Bjorken expansion starting at $t_0 = 0.6 \text{ fm}$.
- A linear relation between T and m_D.
- We stop the evolution at the time in which $T = 175 \text{ MeV}$. Around the phase transition.
Survival probability

We consider:

- A Bjorken expansion starting at $t_0 = 0.6 \text{ fm}$.
- A linear relation between T and m_D.
- We stop the evolution at the time in which $T = 175 \text{ MeV}$. Around the phase transition.

Survival probability

$$S(t) = \exp\left[- \int_{t_0}^{t} d\tau \Gamma(T(\tau), \tau)\right],$$
Note that:

The initial temperature depends on the collision centrality and the point in which the bound state is produced. If $T \gtrsim 250$ MeV, the state melts.
Survival probability

Note that:

- The initial temperature depends on the collision centrality and the point in which the bound state is produced.
Note that:

- The initial temperature depends on the collision centrality and the point in which the bound state is produced.
- If $T \gtrsim 250$ MeV the state melts.
We did not include recombination. Average for p_{\perp} and y values accessible at LHCb. Preliminary result. Cold Nuclear Matter model effects taken from Phys.Rev.D 105 (2022) 1, 014019.
We did not include recombination.
We did not include recombination.

Average for p_{\perp} and y values accessible at LHCb.
We did not include recombination.

Average for p_\perp and y values accessible at LHCb.

Preliminary result.
We did not include recombination.

Average for p_\perp and y values accessible at LHCb.

Preliminary result.

Conclusions

- Studying exotic quarkonia in heavy-ion collisions can shed light on its internal structure.
Conclusions

- Studying exotic quarkonia in heavy-ion collisions can shed light on its internal structure.
- We have developed a qualitative model for the potential of the \(X(3872) \).
Conclusions

- Studying exotic quarkonia in heavy-ion collisions can shed light on its internal structure.
- We have developed a qualitative model for the potential of the $X(3872)$.
- Our results indicate that it melts around 250 MeV. The effect of the decay width is mild in heavy-ion collisions.