

Heavy Flavor in Heavy-ion collisions **Experimental Overview**

Jing Wang (CERN)

10th International Conference on Quarks and Nuclear Physics Barcelona, Spain

jing.wang@cern.ch

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

July 11, 2024

Co Watteen

Quark Gluon Plasma After Hydrodynamics

JX-currity Siecurity 42 dimension the flowed What's that liquid? -36-X-ray it.

Quark gluon plasma...

Hard Probes of Quark Gluon Plasma

Hard probes \rightarrow large Q

- $Q \sim 1/\tau$ creation time
 - Produced early \rightarrow experience whole evolution
 - Unique access to high temperature stage
- $Q \gg \Lambda_{QCD} \sim 200 \text{ MeV}$
 - Initial production calculable with pQCD
- $Q \gg T_{QGP} \sim 400 \text{ MeV for LHC}$
 - Seldom produced in QGP \rightarrow Keep identity
- With color charge EM Bosons are also hard probes
 - Strong interaction with QGP

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Heavy-ion collisions

Heavy quarks (charm, beauty) \rightarrow large mass m_Q

- $m_Q \sim 1/\tau$ creation time
 - Produced early \rightarrow experience whole evolution
 - Unique access to high temperature stage
- $m_Q \gg \Lambda_{QCD}$
 - Initial production calculable with pQCD even at low pT
 - Different length scale structure by varying pT
- $m_Q \gg T_{QGP}$
 - Seldom produced in QGP \rightarrow Keep identity
 - Brownian motion \rightarrow Diffusion coefficient D_s
- $m_Q \gg m_q$
 - Strong interaction with QGP differently from light quark

Heavy Flavors vs Jets

Life of a Heavy Quark in HIC

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Relativistic heavy-ion collisions

Mesons

Fragmentation to c / b hadrons and decay

Transport can be described by Eokker Planck

Life of a Lucky Heavy Quarkonium in HIC

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Life of a Weak Unlucky Quarkonium in HIC

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Life of a Weak Lucky Quarkonium in HIC

Yen-Jie Lee, Andre S. Yoon and Wit Busza

Nuclear Modification Factor RAA in AA Collisions

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Nuclear modification factor RAA

 $R_{AA} = 1$: superposition of nucleon-nucleon collisions

$$R_{AA} = \frac{\mathrm{d}N_{AA}/\mathrm{d}p_{\mathrm{T}}}{T_{AA}\mathrm{d}\sigma_{pp}/\mathrm{d}p_{\mathrm{T}}} \leftarrow \text{Heavy-ion}$$

Nuclear Modification RAA D⁰ Mesons

JHEP 01 (2022) 174 PLB 782 (2018) 474 PRC 99 (2019) 034908 Jing Wang, Experimental Overview on Heavy

- Prompt D⁰ suppression in wide kinematics
 - Charm quark lose energy in QGP via collisions low p_T and radiations high p_T (pQCD picture)

Energy loss of hard parton in QGP in pQCD picture

Bullet in gelatin block

D⁰ **R**_{AA} Understanding the Shape

JHEP 01 (2022) 174 PLB 782 (2018) 474

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

11

R_{AA} Mass Dependence of Energy Loss

PLB 829 (2022) 137077 JHEP 02 (2024) 066 EPJC 78 (2018) 762 EPJC 78 (2018) 509 Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

- Flavor dependent energy loss Dead cone effect
 - Radiation is suppressed inside $\theta < m/E$
 - Energy loss $\Delta E_{l} > \Delta E_{c} > \Delta E_{b}$

Initial Spatial Anisotropy of Medium

Azimuthal anisotropic Initial shape in peripheral* events *Peripheral: relatively large impact parameter

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Animation

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Collective Flow

Science 298 (2002) 2179

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Collective Flow

Pressure driven expansion

Science 298 (2002) 2179

Collective Flow Open Charm

PLB 816 (2021) 136253 PLB 813 (2021) 136054 PLB 807 (2020) 135595 Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

- Significant non-zero open charm flow signal
 - Smaller v₂ than light hadrons at low p_T
 - Magnitude reflects thermalization degree

- Non-zero D meson v₂ up to high p_T
 - Same magnitude with light hadrons
 - Path-length dependence of energy loss

Open Charm Flow LHC vs RHIC

PLB 816 (2021) 136253 PRL 118 (2017) 212301

- Similar D v₂ between LHC PbPb 5 TeV and RHIC AuAu 200 GeV
 - despite different temperature & size?
 - decisive precision at sPHENIX

Collective Flow Open Beauty

PLB 850 (2024) 138389 JHEP 10 (2023) 115 PLB 807 (2020) 135595 Jing Wang, Experimental Overview on Heavy Fl

- Significant non-zero open beauty flow signal
 - Smaller v₂ than charm hadrons at low p_T
 - Weaker collective flow behavior
 - Similar v_2 with open charm at high p_T
 - Path length dependence of energy loss

Collective Flow Charmonia

JHEP 10 (2020) 141 JHEP 10 (2023) 115

- Significant non-zero flow signal of J/ψ
 - Indicate significant contribution from uncorrelated regeneration

Collective Flow Bottomonia

PRL 123 (2019) 192301 PLB 819 (2021) 136385

- Significant non-zero flow signal of J/ψ
 - Indicate significant contribution from uncorrelated regeneration
- Y(1S) v₂ consistent with 0
 - Regeneration of bottomonia should be small

Charmonia in QGP Sequential Melting

EPJC 78 (2018) 762 EPJC 78 (2018) 509 EPJC 78 (2018) 509

Sequential melting

- Charmonia strongly suppressed in PbPb collisions
- Binding energy hierarchy
 - weaker bound state easier to be dissociated
- Stronger suppression in central events *Central: large participant nucleon number Npart
 - higher temperature and larger size

leaker bound

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

21

Charmonia in QGP Regeneration

EPJC 78 (2018) 762 JHEP 02 (2024) 066

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Significant regeneration

- Uncorrelated $Q\bar{Q}$ in QGP regenerate quarkonia
- Increasing R_{AA} at low p_T towards central events
 - central events have larger $\sigma_{c\bar{c}}$

Charmonia in QGP Regeneration

PLB 797 (2019) 134917 PRL 98 (2007) 232301 PLB 849 (2024) 138451 Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Significant regeneration

- Uncorrelated QQ in QGP regenerate quarkonia
- Increasing R_{AA} at low p_T towards central events
 central events have larger σ_{cc̄}
- More significant in LHC than RHIC
 - higher collision energy has larger $\sigma_{c\bar{c}}$

Bottomonia in QGP

arXiv:2303.17026 PRC 107 (2023) 054912 PLB 822 (2021) 136579

Sequential melting

- Bottomonia strongly suppressed in PbPb collisions
- Binding energy hierarchy
 - weaker bound state easier to be dissociated
- Weak (if any) uncorrelated recombination expected for Y(nS)
 - smaller $\sigma_{b\bar{b}}$ than $\sigma_{c\bar{c}}$

24

Heavy Quarkonium Production Challenge

PLB 790 (2019) 270 PRL 130 (2023) 112301

Happy with dissociation + regeneration picture?

- Why is Y(1S) suppression degree so similar in LHC and RHIC?
 - even if they have different initial temperatures
- Why does Y(1S) not continue decreasing in most central events?
 - models with regeneration still don't describe it
- Feed-down contribution not well constrained

25

Heavy Quarkonium Production Challenge

[2303.17026]

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

More excited states Y(3S) observation

- Challenging for theoretical models Particle ratio cancels nPDF effect
- Crucial to constrain feed-down contribution

Revisit J/ψ Really Primordial?

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Early bound state picture

Few surrounding jet activities

Late jet fragmentation picture

How open heavy flavors are formed

- J/ ψ only carries partial transverse momentum in the jet shower

27

J/\phi Production Potential Jet Fragmentation

Early bound state picture Late jet fragmentation picture

- J/ ψ have more surrounding jet activities than (model) expected in pp
 - Similar to open heavy flavors
 - Parton energy loss may also play an important role in J/ψ suppression in HIC

Open HF Hadrons Really from Fragmentation?

- Fragmentation universality assumed across collision systems Default scheme in generators, constrained by measurements in e⁺e⁻ and ep collisions
- - Successful in HF meson production in pp

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Hadronization Non-perturbative problem

Open HF Hadrons Really from Fragmentation?

- Fragmentation universality assumed across collision systems Default scheme in generators, constrained by measurements in e⁺e⁻ and ep collisions
- - Successful in HF meson production in pp
- Modification of hadronization expected in medium Fragmentation + coalescence (combination with partons from medium)

Hadronization Non-perturbative problem

Hadronization Study In Experiments

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

more valence quarks

Coalescence Charm Baryon Λ_c in AA Collisions

JHEP 01 (2024) 128 PLB 839 (2023) 137796 PRL 124 (2020) 172301 PRC 107 (2023) 064901 Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

- Significant larger Λ_c / D^0 in AA compared to pp at intermediate p_T
 - Consistent with coalescence picture

32

Charm Baryon Λ_c Hadronization in pp

[JHEP 12 (2023) 086]

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

- Fragmentation function constrained by e+e- predicts Λ_c / D^0 to be 0.05 0.1 in pp
 - Weak p_T dependence

33

Charm Baryon Λ_c Hadronization in pp

[JHEP 12 (2023) 086]

- Significant larger Λ_c / D⁰ observed in pp
 - Stronger enhancement at low pT compared to e+e-
- Theoretical efforts to describe it
 - More excited baryons
 - Color reconnection
 - Coalescence also in pp

Charm Baryon A_c From e⁺e⁻ to AA

PLB 839 (2023) 137796 JHEP 12 (2023) 086

- One picture for all collision systems?
 - Connect pp and PbPb by intermediate pPb and multiplicity variations

Charm Baryon Λ_c From e+e- to AA

PRC 107 (2023) 064901 CMS-PAS-HIN-21-016

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

- Λ_c / D⁰ has very mild changes over a wide range of multiplicity from pp to peripheral AA
 - wish for theoretical calculations in pPb

→ peripheral PbPb

Hadronization in One Picture p_T -Integrated Λ_c

- p_T -Integrated Λ_c / D⁰ increases dramatically at small multiplicity from e⁺e⁻ to low-multiplicity pp
 - but no result there
- Λ_c / D^0 has very mild changes over a wide range of multiplicity from pp to peripheral AA
 - For both integrated yields and p⊤ dependence
- p_T -Integrated Λ_c / D^0 keeps same but p_T redistributed from peripheral to central AA
 - need better precision though

37

Hadronization in One Picture Λ_b/B⁰ vs Multiplicity

[PRL 132 (2024) 081901]

CERN

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

 Similar observations for beauty sector at low multiplicity environment
 No results in larger collisions

Hadronization in One Picture Strangeness Mesons

• Very different behavior of D_s/D compared to $\Lambda_c/D \rightarrow$ Simultaneous descriptions by models?

CERN

Production Mechanism Probe Exotica Structure

20-year debate of X(3872) nature

Discriminate nature of exotica in heavy-ion collisions (color dense environments)

Tightly bound Small radius

Will be discussed in Su Houng's talk [link]

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Let Probes Be Probes

- Specific shear viscosity η/s derived by HF D_s
 - Consistent with soft probe
 - Sizable uncertainty though
 - Hard probes \rightarrow unique high temperature
- Need substantial efforts to achieve
 - Observables > properties
 - Phenomenology > microscopic structure

Topics not covered

- Medium effects in small systems
- Probes of nuclear PDF
- Detection of early EM fields
- Diffusion measurements with correlations
- Hadronization studies with
 - other baryons
 - fragmentation functions
- Polarizations

. . .

Enjoy More!

Heavy flavor result playground

Get to know the fruitful heavy flavor measurements by different experiments

> Heavy flavor in HI publications

Isabelle

Thanks for your attention!

٤.

de tra

Hadronization Strangeness Mesons

[JHEP 12 (2023) 086]

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

[JHEP 12 (2019) 092]

Initial Production pQCD Test

 Measurements can be described by pQCD calculations with sizable theoretical uncertainty at low p_T Different factorization schemes

 Dominant theoretical uncertainties Factorization and renormalization scale, PDF Can be constrained by high-precision measurements - Simultaneous constraints by varying collision energy and rapidity

Small Systems Being Hot Really Matters?

Can be (kinda) understood in QGP

collisions A Observations in

Strong suppression

Enhancement of baryon production

Collective flow

QQ sequential suppression

Small systems where no QGP is expected

Hadronization modification in pp/pA

	?	
	?	

Observations Ы pp/pA collisions

Small Systems Collective Behaviors

PRL 121 (2018) 082301 PLB 813 (2021) 136036 PLB 791 (2019) 172 PRL 124 (2020) 082301 Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

- Non-zero v₂ of charm hadrons in high-multiplicity pp and pPb collisions
- Source of flow signals not decisive
 - Maybe initial transverse momentum correlation in CGC framework
 - Maybe small QGP medium in final states

47

Small Systems Quarkonia Sequential Suppression

Small Systems Quarkonia Sequential Suppression

- Cancel initial state effects
- Vary multiplicities
 - Examine potential final state effects
 - comover dissociation
 - small medium droplet created

R_{AA} Flavor Dependence

Non-prompt D R_{AA} / Prompt D R_{AA}

nPDF small effect

CERN

 Simultaneous effect on charm and beauty

Mass dependent energy loss significant effect

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Beauty / charm

• Enhance difference between c and b

Hadronization significant effect

Reduce diff between c and b

Initial Production Nuclear Modification

Is initial production in A-A collisions just superposition of nucleon-nucleon collisions?

- p-A collisions to test these kind of effects
 - Ion as collision particles
 - No medium effect expected

 Observable of particle yield modification in pA collisions compared to pp

$$R_{pA} = \frac{\mathrm{d}\sigma_{pA}/\mathrm{d}p_{\mathrm{T}}}{A\,\mathrm{d}\sigma_{pp}/\mathrm{d}p_{\mathrm{T}}} \qquad \leftarrow \mathbf{pA}$$

R_{pA} should be 1 in the naive picture above

Initial Production Nuclear PDF

For low-p_T D mesons in A-A collisions

$$x \sim 2 \frac{\sqrt{(m_D^2 + p_T^2)}}{\sqrt{s_{NN}}} e^{-y}$$

• $x \sim 10^{-3}$ -10⁻² for mid-rapidity

- mix of x ~ 10⁻⁵-10⁻⁴ and x ~ 10⁻²-10⁻¹ for LHCb rapidity
- In most cases for HF hadrons, nPDF leads to
 - suppression at low p_T shadowing
 - mild enhancement at very high p_T anti-shadowing

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

52

Initial Production Nuclear PDF

- D⁰ suppressed at low p_T in forward rapidity in pA
 - Nuclear PDF model can describe it Nucleons in ions have different PDF from free protons
- nPDF is common input for theoretical calculations Not limited to heavy flavors
 - constrained by different probes, among them
 - heavy flavors are important probes for gluon nPDF
 - gluon nPDF is one of the poorest constrained

HF Probe Initial Condition Tilt of Medium

HF Probe Initial Condition Strong EM Field

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

 Tilt → Longitudinal structure of initial Vi energy density distribution
 Non-zero (rapidity-dependent) v1

ZEP

Strong EM field emerges at early stage
 Decays quickly → unique chance for heavy flavors
 ⇒ Split v₁ of c and c̄ → non-zero (rapidity-dep) Δv₁

Difference b/w LHC and RHIC for Δv₁
 Possibly different effect dominates

J/ψ Polarization Initial B Field, Vorticity

- $\lambda_{\theta} > 0 \rightarrow$ Transverse polarization in the direction perpendicular to the reaction plane → connected with
 - Strong magnetic field
 - Rotation at early stage via spin-orbit coupling

HF Probe Fluctuations Initial Geometry

- High-order vn probes event-by-event fluctuation of initial geometry
 - Similar to soft probes but different lengthwave probes

HF Probe Fluctuations Energy Loss

 D^{0} 4-particle correlation v_{2} {4}

- Probe event-by-event fluctuation - $v_2\{2\}^2 \approx \langle v \rangle^2 + \sigma^2$ - $v_2\{4\}^2 \approx \langle v \rangle^2 - \sigma^2$ flow fluctuation
- Indeed $v_2{4} < v_2{2}$ for D^0
 - Provide additional constraints
- v₂ fluctuations from both initial geometry (soft) and energy loss (hard)

Exotica T_{cc} in High Color Density Environment

Tcc yield vs. multiplicity in pp

- Similar idea applied on another exotic T_{cc}
- No suppression in high multiplicity •
 - Different response as X(3872) to the color dense environment

Charmonia in QGP Other Effects

- Stronger suppression at forward rapidity than mid-rapidity
 - similar observable in both LHC and RHIC

Cold nuclear matter effects

*Not saying rapidity dependence is due to CNM

- Comover breakup, nuclear absorption
- Nuclear PDF
- Initial coherent energy loss

X(3872) / ψ (2S) across collision systems

[2402.14975]

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Apply Production Mechanism Probe Exotica Structure

X(3872) to $\psi(2S)$ yield ratio across collision systems

- Dissociated by interactions with comovers (pp/pPb) or medium (PbPb)
 Different binding energy
 - Different binding energy
- Enhanced via recombination

X(3872)

Relativistic Heavy-Ion Collisions

Before collisions (two pancakes of nucleons) Collisions (the harder, the earlier) QGP emergence (tons of soft scatterings) 18 1 **38** (1) **Relativistic heavy-ion collisions** Quark Gluon Plasma Baryons Mesons Yen-Jie Lee, Andre S. Yoon and Wit Busza

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Cool down while expansion

Luminosity Projection Conservative

Quantity	pp	0–0	Ar–Ar	Ca–Ca	Kr–Kr	In–In	Xe–Xe	Pb–Pb
$\sqrt{s_{\rm NN}}$ (TeV)	14.00	7.00	6.30	7.00	6.46	5.97	5.86	5.52
$L_{\rm AA}~({\rm cm}^{-2}{\rm s}^{-1})$	$3.0 imes 10^{32}$	$1.5 imes10^{30}$	$3.2 imes 10^{29}$	$2.8 imes10^{29}$	$8.5 imes10^{28}$	$5.0 imes10^{28}$	$3.3 imes10^{28}$	$1.2 imes 10^{28}$
$\langle L_{\rm AA} \rangle ~({\rm cm}^{-2}{\rm s}^{-1})$	$3.0 imes 10^{32}$	$9.5 imes10^{29}$	$2.0 imes 10^{29}$	$1.9 imes10^{29}$	$5.0 imes10^{28}$	$2.3 imes10^{28}$	$1.6 imes10^{28}$	$3.3 imes10^{27}$
\mathscr{L}_{AA}^{month} (nb ⁻¹)	$5.1 imes 10^5$	$1.6 imes 10^3$	$3.4 imes 10^2$	$3.1 imes 10^2$	$8.4 imes10^1$	$3.9 imes 10^1$	$2.6 imes 10^1$	5.6
$\mathscr{L}_{NN}^{month} (pb^{-1})$	505	409	550	500	510	512	434	242
$R_{\rm max}(\rm kHz)$	24 000	2169	821	734	344	260	187	93
μ	1.2	0.21	0.08	0.07	0.03	0.03	0.02	0.01
$\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta$ (MB)	7	70	151	152	275	400	434	682
				at $R =$	0.5 cm			
$R_{\rm hit}~({\rm MHz/cm^2})$	94	85	69	62	53	58	46	35
NIEL (1 MeV n_{eq}/cm^2)	$1.8 imes 10^{14}$	$1.0 imes 10^{14}$	$8.6 imes10^{13}$	$7.9 imes10^{13}$	$6.0 imes10^{13}$	$3.3 imes10^{13}$	$4.1 imes 10^{13}$	$1.9 imes 10^{13}$
TID (Rad)	$5.8 imes10^6$	$3.2 imes 10^6$	$2.8 imes 10^6$	$2.5 imes10^6$	$1.9 imes 10^6$	$1.1 imes 10^6$	$1.3 imes 10^6$	$6.1 imes 10^5$
				at $R = 1$	100 cm			
$R_{\rm hit} (\rm kHz/cm^2)$	2.4	2.1	1.7	1.6	1.3	1.0	1.1	0.9
NIEL (1 MeV n_{eq}/cm^2)	$4.9 imes 10^9$	$2.5 imes 10^9$	$2.1 imes 10^9$	$2.0 imes10^9$	$1.5 imes 10^9$	$8.3 imes 10^8$	$1.0 imes 10^9$	$4.7 imes 10^8$
TID (Rad)	$1.4 imes 10^2$	$8.0 imes10^1$	$6.9 imes 10^1$	$6.3 imes10^1$	$4.8 imes10^1$	$2.7 imes 10^1$	$3.3 imes10^1$	$1.5 imes 10^1$

operational month (assuming a running efficiency of 65%).

Table 1: Projected LHC performance: For various collision systems, we list the peak luminosity L_{AA} , the average luminosity $\langle L_{AA} \rangle$, the luminosity integrated per month of operation \mathscr{L}_{AA}^{month} , also rescaled to the nucleon–nucleon luminosity \mathscr{L}_{NN}^{month} (multiplying by A^2). Furthermore, we list the maximum interaction rate R_{max} , the minimum bias (MB) charged particle pseudorapidity density $dN/d\eta$, and the interaction probability μ per bunch crossing. For the radii 0.5 cm and 1 m, we also list the particle fluence, the non-ionising energy loss, and the total ionising dose per

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Feed-Down, Binding Energy

Beam Schedule Long Term

Γ					2	2(0	2	2	1					Ι					2	2	C)	2	2	2)									2	2	0)]	2	3	3									2	2	0	2	2	4							
	J	- 1	М	A	۱N	1	J	J		A	S	D	Ν	D).	ן	F	Μ	1	4	Μ	IJ	J	J	A	١	S	С)	V	D	J	F	Μ	A	۱	М	J		ון	Ą	S	SC)	N	D	J	F	Μ	1/	۱	Ν	J	J	A	١	S	0	Ν	D	J	J	F
																																											R	 {(ır I	n	3																

Last update: April 2023

Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Shutdown/Technical stop Protons physics Ions

Commissioning with beam Hardware commissioning

JHEP 10 (2020) 141 JHEP 10 (2023) 115 PLB 819 (2021) 136385 PRL 123 (2019) 192301 Jing Wang, Experimental Overview on Heavy Flavour in Heavy-ion collisions, QNP'24 (July 11, 2024)

Collective Flow Mass Hierarchy Including Quarkonia

• v₂ hierarchy from lightest to heaviest hadrons

Happy with the flow picture? Sorry... Quarkonia actually have different stories

Hadronization Strangeness Mesons

- the measurements of strangeness hadrons
 - D_s/D+ in PbPb PLB 827 (2022) 136986 ALICE
 - B_s/B+ in PbPb PLB 829 (2022) 137062 CMS
 - D_s/D+ vs multiplicity in pPb 2311.08490 LHCb
 - B_s/B^o vs multiplicity in pPb PRL 131 (2023) 061901 LHCb
 - D_s/D+ vs multiplicity in pp PLB 829 (2022) 137065 ALICE

Extension for Homework

• Using the same way we read Λ_c and Λ_b results, understand what is the current picture from

