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Motivation Core magnetic field

■ Neutron star magnetic fields play a crucial role in astrophysics, e.g.:

▶ explain the high activity of magnetars & high-B field pulsars.
▶ field evolution linked to neutron star ‘metamorphosis‘.
▶ influence the dynamics of binary neutron star mergers.
▶ related to many astrophysical phenomena (e.g., FRBs, GRBs).

■ While a lot of progress has been made in modelling the exterior and crustal
magnetic fields, there are still many open questions regarding the field
in the core, carrying a significant fraction of the magnetic energy.

■ Open problems concern, e.g., correct multi-fluid description of matter,
ambipolar diffusion, role of crust-core interface, evolution time-scales for
type-II superconducting matter, and possibility of fast core dissipation.
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Motivation Superconductivity

■ The conditions in the interior are such that nucleons can undergo phase
transitions into superfluid states as a result of Cooper pairing. Detailed
gap calculations suggest the following core critical temperatures:

Tc, protons ∼ 109 − 1010 K, Tc, neutrons ∼ 108 − 109 K, (1)

■ Our understanding of NS superconductivity is mainly based on time-inde-
pendent, single-component considerations (Baym, Pethick & Pines, 1969):

▶ Outer-core protons are in a type-II state
with flux confined to a fluxtube array.

▶ In the inner core, a transition to an
intermediate type-I state takes place.

▶ Magnetic flux expulsion times are very
long, leading to a meta-stable state.

Figure 1: Laboratory type-II and
intermediate type-I superconductor

(Brandt & Essmann, 1987).
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Approach Condensate coupling

What happens to this picture of core superconductivity when coupling
(specifically entrainment) between the condensates is included?

■ Expanding earlier works (Alpar, Langer & Sauls, 1984; Charbonneau & Zhitnitsky,

2007; Alford & Good, 2008; Haber & Schmitt, 2017), we use techniques for labo-
ratory systems to construct phase diagrams by deducing the protons’
ground state in presence of a magnetic field (Wood & Graber, 2022).

■ With entrainment, velocity-dependent terms in energy density read

Fvel =
1
2mnp|Vp|2 + 1

2mnn|Vn|2 − 1
2ρ

pn|Vp − Vn|2 , (2)

where np,n are the nucleon number densities, the coefficient ρpn < 0
determines the strength of entrainment (Andreev & Bashkin, 1976) and Vp,n

are superfluid velocities related to canonical momenta, i.e., ∝ ∇argψx.
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Approach Ginzburg–Landau model

■ In a mean-field framework, entrainment first enters at 4th order in ψn,p

and 2nd order in their derivatives, i.e., we require a linear combination of
terms |ψx |2|∇ψy |2, ψxψy∇ψ⋆x ·∇ψ⋆y , ψxψ

⋆
y∇ψ⋆x ·∇ψy , ψ

⋆
xψ

⋆
y∇ψx ·∇ψy where

x , y ∈ {p, n}. Galilean invariance can be used to simplify the sum.

■ The total free energy density of our two-component superconductor is

F [ψp, ψn,A] = 1
8π |∇× A|2 + gpp
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∣∣2 + h2−h1
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h3
4
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∣∣2 + ∣∣∇(|ψn|2)

∣∣2) , (3)

where gpp,nn define the self-repulsion of the condensates, gpn ≈ 0 their
mutual repulsion and hi are related to the condensates’ coupling.
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Approach Two thought experiments

■ To find the ground state in the presence of an imposed magnetic field,
we can control (i) the thermodynamic external magnetic field H, or
(ii) the magnetic flux density, B = ∇× A, by imposing a mean flux B.

Figure 2: Phase diagrams for a one-component superconductor, for different values of the GL parameter, κ.

Case (ii) approximates the neutron star interior, which becomes
superconducting as the star cools in the presence of pre-existing flux.
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Results Phase diagrams

■ For two-component systems, phase diagrams look more complicated and
we obtain additional mixed states as a result of condensate interactions.
These are marked by first-order transitions at Hc1′ < Hc1 and Hc2′ > Hc2.

Figure 3: Phase diagrams for our two-component superconductor as a function of κ, and√
gnnnn/gppnp = 0.371, np/nn = 0.097, gnp = 0, h1 = 0.102, h2 = 0.387, and h3 = 0.263.

The shading is indicative of the actual distribution of magnetic flux.
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Results Mixed states

■ We find inhomogeneous regimes where fluxtube and non-superconducting
regions (left) as well as Meissner and fluxtube regions (right) alternate.

Figure 4: Inhomogeneous
ground states, where
brightness and hue

indicate the density and
phase of the proton
order parameter, ψp,

respectively.

■ Reminiscent of type-1.5 superconductivity
in terrestrial systems ⇒ entrainment causes
fluxtube repulsion on short scales & attraction
on large scales, resulting in mixed states.

Figure 5: Image of multi-band SC
Mg2B (Moshchalkov et al., 2009).
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Results Skyrme connection

■ After determining the composition based on the full Skyrme model, we
link our Ginzburg–Landau model to a reduced Skyrme functional to obtain
the coefficients hi and determine the ground state at different densities.

■ To determine gpp and gnn, we consider the CCDK (protons) and TToa
(neutrons) gaps motivated by Cas A cooling observations (Ho et al., 2015).

Figure 6: Phase diagrams for the NRAPR equation of state as a function of density.
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Results Different EoSs

We find mixed states for all
six Skyrme functionals but
their locations and extents
vary significantly between

different EoS models!
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THANK YOU!
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Appendix Two core condensates

■ Detailed BCS calculations provide pairing energy gaps ∆, associated
with the critical temperatures Tc for the superfluid and superconducting
phase transitions. Two models supported by observed cooling of CasA:
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Figure 7: Left: Parametrised proton (singlet) and neutron (triplet) gaps as a function of Fermi wave
numbers (Ho et al., 2015). Right: Critical temperatures of core superconductivity/superfluidity as a function of
the number and mass density. The curves are computed for three Skyrme equations of state (Chamel, 2008).
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Appendix The (old) type-II picture

Figure 8: Type-II and intermediate type-I
state (Brandt & Essmann, 1987).

■ Due to high conductivity, the magnetic flux
cannot be expelled from their interiors ⇒
neutron stars do not exhibit Meissner effect
and are in a metastable state (Baym, Pethick

& Pines, 1969; Ho, Andersson & Graber, 2017).

■ State depends on characteristic lengthscales and standard considera-
tions give κ = λ⋆/ξft > 1/

√
2 in the outer core, i.e., a type-II state with

Hc1 = 4πEft/ϕ0 ∼ 1014 G, Hc2 = ϕ0/(2πξ2
ft) ∼ 1015 G. (4)

■ Each fluxtube carries a flux quantum ϕ0 = hc/2e ≈ 2.1 × 10−7 Gcm2.
All flux quanta add up to the total magnetic flux, so that the averaged
magnetic induction is related to the fluxtube area density Nft:

B = Nftϕ0, → Nft ≈ 4.8 × 1018 (
B/1012 G

)
cm−2. (5)
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Appendix Skyrme connection

■ We connect energy functional to the Skyrme interaction to obtain coeffi-
cients hi that allow a realistic description of the neutron star interior:

h1 = C τ0 − C τ1 , h2 = −4C∆ρ
0 + 4C∆ρ

1 , (6)

h3 = h4 = C τ0 + C τ1 − 4C∆ρ
0 − 4C∆ρ

1 . (7)

■ The parameter h1 controls the entrainment (Chamel & Haensel, 2006)

ρpn = − 2
ℏ2 h1ρnρp. (8)

■ We also use the Skyrme model to determine the stellar composition
(solving for baryon conservation, charge neutrality, beta equilibrium and
muon production rate) (Chamel, 2008), but a separate parametrisation for
the SF/SC gaps (Andersson, Comer & Glampedakis, 2005; Ho et al., 2015).
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Appendix Thought experiments

■ To find the ground state for our system in the presence of an imposed
magnetic field, we can perform two distinct experiments: we control (i)
the magnetic flux density, B = ∇× A, by imposing a mean or net
magnetic flux, or (ii) the thermodynamic external magnetic field, H.

■ In the first case, we minimise the Helmholtz free energy, F = ⟨F ⟩,
where the angled brackets represent some kind of integral over our
physical domain ⇒ closely approximates the conditions in the neutron star
core, which becomes superconducting as the star cools in the presence of
pre-existing magnetic field. The ground state can be inhomogeneous.

■ In the second case, we minimise the dimensionless Gibbs free energy,
G = F − 2κ2H · ⟨B⟩. In an unbounded domain, the ground state is
guaranteed to be homogeneous, and the phase diagram simpler.

QNP2024 v.graber@herts.ac.uk 14



Appendix Euler-Lagrange equations

■ Whether we work with F or G, we obtain the same equations of motion:

κ2∇× (∇× A) = ℑ
{
ψ⋆p(∇− iA)ψp +

h1

ϵ
ψnψ

⋆
p(∇− iA)(ψ⋆nψp)

}
, (9)

∇2ψn = R2(|ψn|2 − 1)ψn + α(|ψp|2 − 1)ψn

− h1ψp(∇+ iA)2(ψ⋆pψn)

− ψn∇2
(
h2 − h1

2
|ψp|2 +

h3

2ϵ
|ψn|2

)
, (10)

(∇− iA)2ψp = (|ψp|2 − 1)ψp +
α

ϵ
(|ψn|2 − 1)ψp

− h1

ϵ
ψn(∇− iA)2(ψ⋆nψp)

− ψp∇2
(
h2 − h1

2ϵ
|ψn|2 +

h3

2
|ψp|2

)
. (11)
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Appendix Energy minimisation

■ F is approximated numerically on a regular 2D grid. The order parameters
ψp and ψn are defined on the gridpoints as ψi,j

p and ψi,j
n , while the vector

field A has two components, (Ax ,Ay ), defined on the corresponding links
between the gridpoints, i.e., we have A

i+1/2,j
x and A

i,j+1/2
y .

■ The gauge coupling between ψp and A is implemented using a Peierls
substitution to preserve (discrete) gauge symmetry, e.g.,∣∣∣∣( ∂

∂x
− iAx

)
ψp

∣∣∣∣ = ∣∣∣∣ ∂∂x exp(−
∫

iAx dx)ψp

∣∣∣∣
⇒

∣∣∣∣( ∂

∂x
− iAx

)
ψp

∣∣∣∣i+1/2,j

≃ 1
δx

∣∣∣exp(−iAi+1/2,j
x δx)ψi+1,j

p − ψi,j
p

∣∣∣ . (12)

■ This leads to a discrete approximation Fdis[ψ
i,j
p , ψ

i,j
n ,A

i+1/2,j
x ,A

i,j+1/2
y ] and

we obtain the ground state using a gradient-descent, iteration method.
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Appendix Energy per flux quantum

■ We solve the Euler-Lagrange equations with quasi-periodic boundary
conditions (Wood et al., 2019), which involves specifying the domain size
Lx × Ly , and the number N of magnetic flux quanta within the domain
⇒ different choices allow comparing square and hexagonal lattices.

■ The Helmholtz free energy per magnetic flux quantum per unit length is
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(13)
Figure 9: Helmholtz free energy per flux

quantum per unit length, F , as a function
of the area per magnetic flux quantum,

a = 2π/B, for the NRAPR EoS at
nb = 0.2831/fm3. The energy in the

square (long-dashed, cyan) and hexagonal
(solid, blue) lattice states matches
smoothly onto the energy of the

non-superconducting state (short-dashed,
purple) at a ≃ 12.9.
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Appendix (A few) caveats

■ We assume that the Skyrme model correctly describes interactions up
to the neutron star centre. If exotic particles / non-nucleonic matter are
present, this would modify the picture at high densities.

■ Our superfluid gap models (p: CCDK, n: TToa) are motivated by
cooling observations of the Cas A supernova remnant but inconsistent
with the mean-field description of the interacting particles.

■ Our Ginzburg–Landau model is time-independent and neglects
rotation, i.e., we do not capture dynamics or incorporate neutron
vortices yet, which are crucial to get the full macroscopic picture.

■ For a full dynamical model, we would need to incorporate the normal
electron component. We do not have the formalism to consistently
include such a (particle) component in the Ginzburg–Landau model yet.
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