EIC, a factory for heavy pentaquarks?

Yongsun Kim (Sejong University) QNP2024 Jul. 09. 2024

New exotic particles at LHCb

New exotic particles at LHCb

P_c brothers discovered by LHCb

Decay of P_c

P

Production of P_c

Perhaps we can create P_c by $J/\gamma + p \rightarrow p_c$

Perhaps we can create P_c by $\gamma + p \rightarrow p_c$

(1) Z.Phys. A356 (1996) 193-206, Klingl et al.

(2) Currents and Mesons (1969), Sakurai

Electro-production of P_c

Perhaps we can create P_c by $e + p \rightarrow e + p_c$ in the e+p collision

(1) Z.Phys. A356 (1996) 193-206, Klingl et al.

[2] Currents and Mesons (1969), Sakurai

Electron Ion Collider

Science mission of EIC^[1]

- Precision 3D imaging of protons and nuclei
- Solving the proton spin puzzle
- Search for saturation
- Quark and gluon confinement
- · Quarks and gluons in nuclei

Electron Ion Collider

Science mission of EIC^[1]

- Precision 3D imaging of protons and nuclei
- Solving the proton spin puzzle
- Search for saturation
- Quark and gluon confinement
- Quarks and gluons in nuclei
- Discovery and characterization of exotic hadrons?

Electron Ion Collider

Collider experiment v.s target experiment

Collider experiment

ePIC detector

Computation of P_c cross section at EIC

[1] Z.Phys. A356 (1996) 193-206
[2] PRL 21, 244-247 (1968)

Formalism

Lagrangian

$$\mathcal{L}_{\text{int}} = \begin{cases} \frac{g_{JpP_{c}}}{m_{J/\psi}} \bar{\psi}_{p} \sigma^{\mu\nu} F^{J}_{\mu\nu} \psi_{P_{c}} & J^{P} = \frac{1}{2}^{+}, \\ \frac{g_{JpP_{c}}}{m_{J/\psi}} \bar{\psi}_{p} \gamma_{5} \sigma^{\mu\nu} F^{J}_{\mu\nu} \psi_{P_{c}} & J^{P} = \frac{1}{2}^{-}, \\ \frac{g_{JpP_{c}}}{m_{J/\psi}} \bar{\psi}_{p} \gamma_{5} \gamma^{\mu} F^{J}_{\mu\nu} \psi^{\nu}_{P_{c}} & J^{P} = \frac{3}{2}^{+}, \\ \frac{g_{JpP_{c}}}{m_{J/\psi}} \bar{\psi}_{p} \gamma^{\mu} F^{J}_{\mu\nu} \psi^{\nu}_{P_{c}} & J^{P} = \frac{3}{2}^{-}. \end{cases}$$

+ Fixing interaction strength from Γ

$$\Gamma_{P_c \to p+J/\psi} = \frac{1}{8\pi} \frac{|\vec{p_f}|}{m_{P_c}^2} |\mathcal{M}|^2$$

Results in 2 spin x 2 parity cases

p P_c

Vector meson dominance model

$$\mathcal{L}_{J/\psi\gamma} = -\frac{e}{2g_J} F^{\mu\nu} F^J_{\mu\nu},$$

$$\mathcal{L}_{\gamma e^- e^+} = -e ar{\psi} \gamma^\mu A_\mu \psi,$$

- Coupling constant g_J is computed from J/ψ→e⁺e⁻ decay width
 - Γ = 95.9 keV x 5.97%
- Photo-production strength

$$g_{\gamma p P_c} = -\frac{e g_{J p P_c} q^2}{g_J} \frac{1}{q^2 - m_{J/\psi}^2}$$

$P_c(4312)$ yields at EIC

TABLE II. Expected number of $P_c(4312)$ produced at the EIC with 10 fb^{-1} .

J^P of P_c	$\frac{1}{2}^+$	$\frac{1}{2}^{-}$	$\frac{3}{2}^+$	$\frac{3}{2}^{-}$
Yield	5.67×10^{3}	1.13×10^{3}	4.32×10^4	7.15×10^{3}

 $O(10^3) - O(10^4)$ of P_c produced in a month, EIC being a potential pentaquark factory!

Spin of Pc can be resolved by measuring forward-to-backward ratio!

Determination of parity

(c)

lucleon

Photor J/ψ P_{C} proton $\int \frac{d}{d}$ J/ ψ has spin-1 and its polarity • can be measured from the decay kinematics

 e^+

e

Resolution of parity by polarized ep at EIC^{e}

proton

- J/ ψ has spin-1 and its polarity can be measured from the decay kinematics
- Parity would be experimentally determined by polarized e+p collision at EIC

- Calculation predicted a resonance of P_s (*uudss*) near $\Sigma + K^*$ [1]
- SI Nam showed that if $p_s(2071)$ ever exists, the resonance would appear in the $K^+p \to K^+\phi p$ Dalitz plot [1]
- Considering VMD model, the same phenomenon can happen in the $\gamma+p \to (p_s \to) \; \phi+p \; {\rm process}$

Cross section of ϕ photo-production

Total cross cross section

Spin density matrix component

- ρ_{00}^0 reflects the single helicity-flip transition between the incoming photon and the outgoing ϕ meson [1]
- WIP to find visible signals expected using polarized *ep* at EIC

Summary

Science mission of EIC^[1]

- Precision 3D imaging of protons and nuclei
- Solving the proton spin puzzle
- Search for saturation
- Quark and gluon confinement
- Quarks and gluons in nuclei
- Discovery and characterization of exotic hadrons?

BACKUP