Hadron interactions using three-quark potential in a constituent quark model

Aaron Park Yonsei University

Collaborated with Su Houng Lee and Sungsik Noh

QNP2024 – The 10th International Conference on Quarks and Nuclear Physics

Contents

- Introduction : Three-body forces
- New three-quark potentials
- Results: Baryons, Tetraquarks, Dibaryons
- Summary

Introduction

QNP2024 – The 10th International Conference on Quarks and Nuclear Physics

$$C_{123} = \begin{cases} \sum_{i < j}^{3} F_i \cdot F_j \\ = F_1 \cdot F_2 + F_1 \cdot F_3 + F_2 \cdot F_3, \\ d^{abc} F_1^a F_2^b F_3^c, \\ i f^{abc} F_1^a F_2^b F_3^c, \end{cases}$$
 Intrinsic 3-body forces

$$d^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k} = \frac{1}{6} \left[C^{(3)}_{i+j+k} - \frac{5}{2}C^{(2)}_{i+j+k} + \frac{20}{3} \right]$$
$$\langle C^{(2)} \rangle = \frac{1}{3} (\lambda^{2} + \mu^{2} + \lambda \mu + 3\lambda + 3\mu)$$
$$\langle C^{(3)} \rangle = \frac{1}{18} (\lambda - \mu)(2\lambda + \mu + 3)(\lambda + 2\mu + 3)$$

$$\bar{\mathcal{C}}_{123} = \begin{cases} -d^{abc} F_1^a F_2^b \bar{F}_3^c, \\ d^{abc} F_1^a \bar{F}_2^b \bar{F}_3^c, \\ -d^{abc} \bar{F}_1^a \bar{F}_2^b \bar{F}_3^c. \end{cases}$$

V. Dmitrašinovic, PLB 499, 135(2001)

S. Pepin and Fl. Stancu, PRD 65, 054032(2002)

$$C_{123} = \begin{cases} \sum_{i < j}^{3} F_{i} \cdot F_{j} \\ = F_{1} \cdot F_{2} + F_{1} \cdot F_{3} + F_{2} \cdot F_{3}, \\ d^{abc} F_{1}^{a} F_{2}^{b} F_{3}^{c}, \\ i f^{abc} F_{1}^{a} F_{2}^{b} F_{3}^{c}, \end{cases} \text{ Intrinsic 3-body forces}$$

$$\begin{split} &d^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k} \\ &= \frac{1}{4}[(ijk) + (ikj)] + \frac{1}{9}I - \frac{1}{6}[(ij) + (ik) + (jk)], \\ &f^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k} = \frac{i}{4}[(ijk) - (ikj)]. \end{split}$$

$$\bar{\mathcal{C}}_{123} = \begin{cases} -d^{abc} F_1^a F_2^b \bar{F}_3^c, \\ d^{abc} F_1^a \bar{F}_2^b \bar{F}_3^c, \\ -d^{abc} \bar{F}_1^a \bar{F}_2^b \bar{F}_3^c. \end{cases}$$

V. Dmitrašinovic, PLB 499, 135(2001)

S. Pepin and Fl. Stancu, PRD 65, 054032(2002)

$$C_{123} = \begin{cases} \sum_{i < j}^{3} F_{i} \cdot F_{j} \\ = F_{1} \cdot F_{2} + F_{1} \cdot F_{3} + F_{2} \cdot F_{3}, \\ d^{abc} F_{1}^{a} F_{2}^{b} F_{3}^{c}, \\ i f^{abc} F_{1}^{a} F_{2}^{b} F_{3}^{c}, \end{cases} \text{ Intrinsic 3-body forces}$$

$$d^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k}$$

= $\frac{1}{4}[(ijk) + (ikj)] + \frac{1}{9}I - \frac{1}{6}[(ij) + (ik) + (jk)],$
 $f^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k} = \frac{i}{4}[(ijk) - (ikj)].$

$$\bar{\mathcal{C}}_{123} = \begin{cases} -d^{abc} F_1^a F_2^b \bar{F}_3^c, \\ d^{abc} F_1^a \bar{F}_2^b \bar{F}_3^c, \\ -d^{abc} \bar{F}_1^a \bar{F}_2^b \bar{F}_3^c. \end{cases}$$

For a baryon,

$$d^{abc}F^a_iF^b_jF^c_k = \frac{10}{9},$$
$$f^{abc}F^a_iF^b_jF^c_k = 0.$$

V. Dmitrašinovic, PLB 499, 135(2001)

S. Pepin and Fl. Stancu, PRD 65, 054032(2002)

$$C_{123} = \begin{cases} \sum_{i < j}^{3} F_i \cdot F_j \\ = F_1 \cdot F_2 + F_1 \cdot F_3 + F_2 \cdot F_3, \\ d^{abc} F_1^a F_2^b F_3^c, \\ i f^{abc} F_1^a F_2^b F_3^c, \end{cases}$$
 Intrinsic 3-body forces

$$\begin{aligned} d^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k} \\ &= \frac{1}{4}[(ijk) + (ikj)] + \frac{1}{9}I - \frac{1}{6}[(ij) + (ik) + (jk)], \\ f^{abc}F^{a}_{i}F^{b}_{j}F^{c}_{k} &= \frac{i}{4}[(ijk) - (ikj)]. \end{aligned}$$

$$\bar{\mathcal{C}}_{123} = \begin{cases} -d^{abc} F_1^a F_2^b \bar{F}_3^c, \\ d^{abc} F_1^a \bar{F}_2^b \bar{F}_3^c, \\ -d^{abc} \bar{F}_1^a \bar{F}_2^b \bar{F}_3^c. \end{cases}$$

For a baryon,

$$d^{abc}F^a_iF^b_jF^c_k = \frac{10}{9},$$
$$f^{abc}F^a_iF^b_jF^c_k = 0.$$

4 0

For tetraquark,

$$V_{s} = c \frac{5}{18} \omega^{2} (\mathbf{r}_{12}^{2} + \mathbf{r}_{13}^{2} + \mathbf{r}_{14}^{2} + \mathbf{r}_{23}^{2} + \mathbf{r}_{24}^{2} + \mathbf{r}_{34}^{2}),$$

$$V_{a} = -c \frac{5}{9} \omega^{2} (\mathbf{r}_{12}^{2} + \mathbf{r}_{13}^{2} + \mathbf{r}_{14}^{2} + \mathbf{r}_{23}^{2} + \mathbf{r}_{24}^{2} + \mathbf{r}_{34}^{2}).$$

$$[s \equiv 8, a \equiv 1]$$

$$-\frac{3}{2} < c < \frac{78}{5}.$$

V. Dmitrašinovic, PLB 499, 135(2001) S. Pepin and Fl. Stancu, PRD 65, 054032(2002)

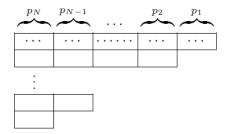
Casimir Invariants

There are two Casimir operators in SU(3).

*C*₂: quadratic Casimir operator *C*₃: cubic Casimir operator

$$\begin{split} C_{2} &= \sum_{i,j} F_{i}^{c} F_{j}^{c} = \sum_{i} F_{i}^{c} F_{i}^{c} + 2 \sum_{i < j} F_{i}^{c} F_{j}^{c} \\ C_{3} &= \sum_{i,j,k} d^{abc} F_{i}^{a} F_{j}^{b} F_{k}^{c} \\ &= \sum_{i} d^{abc} F_{i}^{a} F_{i}^{b} F_{i}^{c} + 6 \sum_{i < j} d^{abc} F_{i}^{a} F_{j}^{b} F_{j}^{c} + 6 \sum_{i < j < k} d^{abc} F_{i}^{a} F_{j}^{b} F_{k}^{c} \end{split}$$

Casimir Invariants



For SU(N),

total number of box :
$$n = p_1 + 2p_2 + \dots + Np_N = \sum_{k=1}^N kp_k$$

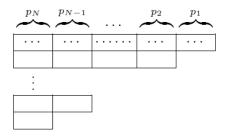
$$C_2^{SU(N)} = \frac{n}{2N}(N^2 - 1) + \frac{1}{N}(N - 1)\left[\sum_{i=1}^N \binom{\sum_{j=i}^N p_j}{2}\right] - \sum_{k=1}^{N-1} \left(\sum_{j=k+1}^N (j-k)p_j\right)\left(1 + \frac{1}{N}\sum_{i=k}^N p_i\right)$$

$$\begin{split} C_2^{\mathrm{SU}(3)} &= p_1 + \frac{p_1^2}{3} + p_2 + \frac{1}{3}p_1p_2 + \frac{p_2^2}{3} \\ C_2^{\mathrm{SU}(4)} &= \frac{3p_1}{2} + \frac{3p_1^2}{8} + 2p_2 + \frac{1}{2}p_1p_2 + \frac{p_2^2}{2} + \frac{3p_3}{2} + \frac{1}{4}p_1p_3 + \frac{1}{2}p_2p_3 + \frac{3p_3^2}{8} \\ C_2^{\mathrm{SU}(5)} &= 2p_1 + \frac{2p_1^2}{5} + 3p_2 + \frac{3}{5}p_1p_2 + \frac{3p_2^2}{5} + 3p_3 + \frac{2}{5}p_1p_3 + \frac{4}{5}p_2p_3 + \frac{3p_3^2}{5} + 2p_4 + \frac{1}{5}p_1p_4 + \frac{2}{5}p_2p_4 + \frac{3}{5}p_3p_4 \\ &+ \frac{2p_4^2}{5} \\ C_2^{\mathrm{SU}(6)} &= \frac{5p_1}{2} + \frac{5p_1^2}{12} + 4p_2 + \frac{2}{3}p_1p_2 + \frac{2p_2^2}{3} + \frac{9p_3}{2} + \frac{1}{2}p_1p_3 + p_2p_3 + \frac{3p_3^2}{4} + 4p_4 + \frac{1}{3}p_1p_4 + \frac{2}{3}p_2p_4 + p_3p_4 \\ &+ \frac{2p_4^2}{3} + \frac{5p_5}{2} + \frac{1}{6}p_1p_5 + \frac{1}{3}p_2p_5 + \frac{1}{2}p_3p_5 + \frac{2}{3}p_4p_5 + \frac{5p_5^2}{12} \end{split}$$

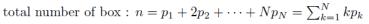
Casimir invariants does not depend on p_N .

QNP2024 - The 10th International Conference on Quarks and Nuclear Physics

Casimir Invariants



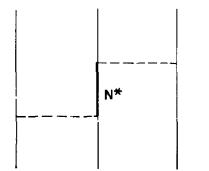
For SU(N),



$$\begin{split} C_{3}^{\mathrm{SU}(3)} &= \frac{1}{18}(p_{1} - p_{2})(p_{1} + 2p_{2} + 3)(2p_{1} + p_{2} + 3) \\ C_{3}^{\mathrm{SU}(4)} &= \frac{3}{2}p_{1} + \frac{9}{8}p_{1}^{2} + \frac{3}{16}p_{1}^{3} + \frac{3}{4}p_{1}p_{2} + \frac{3}{8}p_{1}^{2}p_{2} - \frac{3}{2}p_{3} + \frac{3}{16}p_{1}^{2}p_{3} - \frac{3}{4}p_{2}p_{3} - \frac{9}{8}p_{3}^{2} - \frac{3}{16}p_{1}p_{3}^{2} - \frac{3}{8}p_{2}p_{3}^{2} - \frac{3}{16}p_{3}^{3} \\ C_{3}^{\mathrm{SU}(5)} &= 3p_{1} + \frac{9p_{1}^{2}}{5} + \frac{6p_{1}^{3}}{25} + \frac{3p_{2}}{2} + \frac{9}{5}p_{1}p_{2} + \frac{27}{50}p_{1}^{2}p_{2} + \frac{9p_{2}^{2}}{10} + \frac{9}{50}p_{1}p_{2}^{2} + \frac{3p_{3}^{2}}{25} - \frac{3p_{3}}{2} + \frac{3}{5}p_{1}p_{3} + \frac{9}{25}p_{1}^{2}p_{3} + \frac{6}{25}p_{1}p_{2}p_{3} \\ &+ \frac{6}{25}p_{2}^{2}p_{3} - \frac{9p_{3}^{2}}{10} - \frac{3}{25}p_{1}p_{3}^{2} - \frac{6}{25}p_{2}p_{3}^{2} - \frac{3p_{3}^{3}}{25} - 3p_{4} + \frac{9}{50}p_{1}^{2}p_{4} - \frac{3}{5}p_{2}p_{4} + \frac{3}{25}p_{1}p_{2}p_{4} + \frac{3}{25}p_{2}^{2}p_{4} - \frac{9}{5}p_{3}p_{3} \\ &- \frac{3}{25}p_{1}p_{3}p_{4} - \frac{6}{25}p_{2}p_{3}p_{4} - \frac{9}{50}p_{3}^{2}p_{4} - \frac{9p_{4}^{2}}{5} - \frac{9}{50}p_{1}p_{4}^{2} - \frac{9}{25}p_{2}p_{4}^{2} - \frac{27}{50}p_{3}p_{4}^{2} - \frac{6p_{3}^{3}}{25} \end{split} \tag{3:} \\ C_{3}^{\mathrm{SU}(6)} &= 5p_{1} + \frac{5p_{1}^{2}}{2} + \frac{5p_{1}^{3}}{18} + 4p_{2} + 3p_{1}p_{2} + \frac{2}{3}p_{1}^{2}p_{2} + 2p_{2}^{2} + \frac{1}{3}p_{1}p_{2}^{2} + \frac{2p_{2}^{3}}{9} + \frac{3}{2}p_{1}p_{3} + \frac{1}{2}p_{1}^{2}p_{3} + \frac{3}{2}p_{2}p_{3} + \frac{1}{2}p_{1}p_{2}p_{3} \\ &+ \frac{1}{2}p_{2}^{2}p_{3} - 4p_{4} + \frac{1}{2}p_{1}p_{4} + \frac{1}{3}p_{1}^{2}p_{4} + \frac{1}{3}p_{1}p_{2}p_{4} - \frac{3}{2}p_{3}p_{4} - 2p_{4}^{2} - \frac{1}{6}p_{1}p_{4}^{2} - \frac{1}{3}p_{2}p_{4}^{2} - \frac{1}{2}p_{3}p_{4}^{2} - \frac{2p_{4}^{3}}{9} \\ &- 5p_{5} + \frac{1}{6}p_{1}^{2}p_{5} - \frac{1}{2}p_{2}p_{5} + \frac{1}{6}p_{1}p_{2}p_{5} + \frac{1}{6}p_{2}^{2}p_{5} - \frac{3}{2}p_{3}p_{5} - 3p_{4}p_{5} - \frac{1}{6}p_{1}p_{4}p_{5} - \frac{1}{3}p_{2}p_{4}p_{5} - \frac{1}{3}p_{4}p_{5}^{2} - \frac{5p_{3}^{3}}{18} \end{aligned}$$

Casimir invariants does not depend on p_N . However, note that interaction factor can depend on total number of quarks.

Three-body forces in nuclear physics



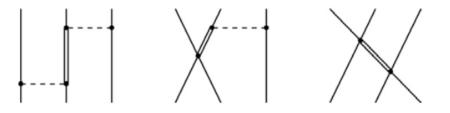
$$V^{(3)} = V(123) + V(231) + V(312),$$

$$V(123) = -[\{A(\tau^{1}\tau^{2}) (\tau^{2}\tau^{3}) + B(\tau^{3}\tau^{2}) (\tau^{2}\tau^{1})\} (\sigma^{1}\overline{V}^{1}) (\sigma^{2}\overline{V}^{1}) (\sigma^{2}\overline{V}^{3}) (\sigma^{3}\overline{V}^{3}) + \{B(\tau^{1}\tau^{2}) (\tau^{2}\tau^{3}) + A(\tau^{3}\tau^{2}) (\tau^{2}\tau^{1})\} (\sigma^{3}\overline{V}^{3}) (\sigma^{2}\overline{V}^{3}) (\sigma^{2}\overline{V}^{1}) (\sigma^{1}\overline{V}^{1}) + 2D(\tau^{1}\tau^{3}) (\sigma^{1}\overline{V}^{1}) (\sigma^{3}\overline{V}^{3})] Y(12) Y(23),$$

G.E.Brown et al, Nucl. Phys. A 115, 435(1968)

J.Fujita and H.Miyazawa, Prog. Theor. Phys. 17, 360(1957)

The middle nucleon goes virtually to some excited state.



E.Epelbaum, Prog. Part. Nucl. Phys. 57, 654(2006)

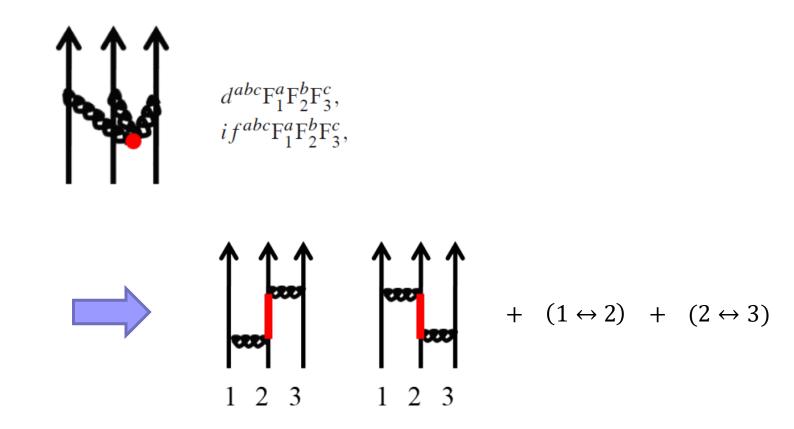
Leading contributions to the 3NF due to explicit Δ 's.

How about applying this concept to the three-quark potential?

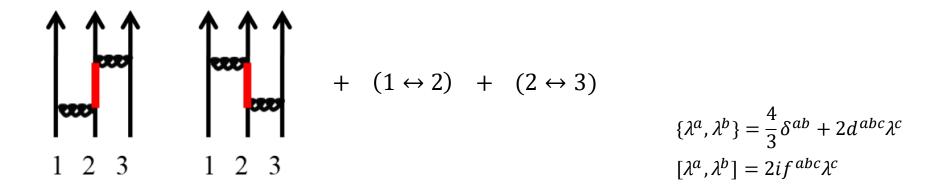
New three-quark potentials

QNP2024 - The 10th International Conference on Quarks and Nuclear Physics

New three-quark potentials: color-color



New three-quark potentials: color-color

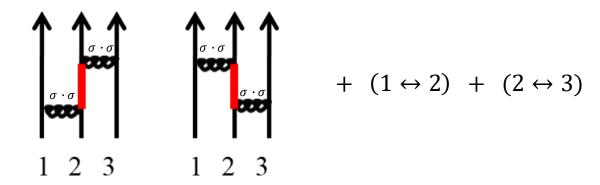


$$\begin{split} (\lambda_1^a \lambda_2^a) (\lambda_2^b \lambda_3^b) &+ (\lambda_2^a \lambda_3^a) (\lambda_1^b \lambda_2^b) = \lambda_1^a (-\lambda_2^b \lambda_2^a + \frac{4}{3} \delta^{ab} + 2d^{abc} \lambda_2^c) \lambda_3^b + (\lambda_2^a \lambda_3^a) (\lambda_1^b \lambda_2^b) \\ &= -\lambda_1^a \lambda_2^b \lambda_2^a \lambda_3^b + \frac{4}{3} \lambda_1^a \lambda_3^a + 2d^{abc} \lambda_1^a \lambda_2^c \lambda_3^b + (\lambda_2^a \lambda_3^a) (\lambda_1^b \lambda_2^b) \\ &= -(\lambda_2^a \lambda_3^a) (\lambda_1^b \lambda_2^b) + \frac{4}{3} \lambda_1^a \lambda_3^a + 2d^{abc} \lambda_1^a \lambda_2^b \lambda_3^c + (\lambda_2^a \lambda_3^a) (\lambda_1^b \lambda_2^b) \\ &= \frac{4}{3} \lambda_1^a \lambda_3^a + 2d^{abc} \lambda_1^a \lambda_2^b \lambda_3^c \end{split}$$

$$L_{123}^{C-C} = \frac{4}{3} \left(\frac{\lambda_2^c \lambda_3^c}{m_1} + \frac{\lambda_1^c \lambda_3^c}{m_2} + \frac{\lambda_1^c \lambda_2^c}{m_3} \right) + 2 \frac{d^{abc} (\lambda_1^a \lambda_2^b \lambda_3^c)}{(m_1^c + m_2^c + m_3^c)} \left(\frac{1}{m_1^c} + \frac{1}{m_2^c} + \frac{1}{m_3^c} \right)$$

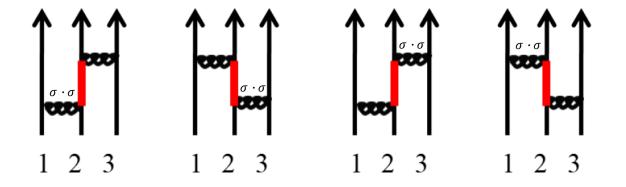
QNP2024 – The 10th International Conference on Quarks and Nuclear Physics

New three-quark potentials: color-spin



$$\begin{split} L_{123}^{S-S} &= \frac{1}{m_1 m_2 m_3} \Bigg[\frac{4}{3} \Bigg(\frac{(\sigma_2 \cdot \sigma_3) (\lambda_2^c \lambda_3^c)}{m_1^2} + \frac{(\sigma_1 \cdot \sigma_3) (\lambda_1^c \lambda_3^c)}{m_2^2} + \frac{(\sigma_1 \cdot \sigma_2) (\lambda_1^c \lambda_2^c)}{m_3^2} \Bigg) \\ &+ 2 \frac{d^{abc} (\lambda_1^a \lambda_2^b \lambda_3^c)}{m_1^2} \Bigg(\frac{\sigma_2 \cdot \sigma_3}{m_1^2} + \frac{\sigma_1 \cdot \sigma_3}{m_2^2} + \frac{\sigma_1 \cdot \sigma_2}{m_3^2} \Bigg) - 2 \epsilon_{ijk} \sigma_1^i \sigma_2^j \sigma_3^k \frac{f^{abc} \lambda_1^a \lambda_2^b \lambda_3^c}{m_1^2} \Bigg(\frac{1}{m_1^2} + \frac{1}{m_2^2} + \frac{1}{m_3^2} \Bigg) \Bigg] \end{split}$$

New three-quark potentials: color-spin hybrid



$$+ (1 \leftrightarrow 2) + (2 \leftrightarrow 3)$$

$$\begin{split} L_{123}^{C-S} &= \frac{4}{3} \bigg[\frac{(\lambda_1^c \lambda_3^c)}{m_2} \bigg(\frac{\sigma_2 \cdot \sigma_3}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) + \frac{(\lambda_1^c \lambda_2^c)}{m_3} \bigg(\frac{\sigma_3 \cdot \sigma_2}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_3}{m_3 m_1} \bigg) + \frac{(\lambda_2^c \lambda_3^c)}{m_1} \bigg(\frac{\sigma_1 \cdot \sigma_3}{m_1 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) \bigg] \\ &+ 2 d_{abc} (\lambda_1^a \lambda_2^b \lambda_3^b) \bigg[\frac{1}{m_2} \bigg(\frac{\sigma_2 \cdot \sigma_3}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) + \frac{1}{m_3} \bigg(\frac{\sigma_3 \cdot \sigma_2}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_3}{m_3 m_1} \bigg) + \frac{1}{m_1} \bigg(\frac{\sigma_1 \cdot \sigma_3}{m_1 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) \bigg] \end{split}$$

New three-quark potentials: antiquarks

For antiquarks, $\{\bar{\lambda}^{a}, \bar{\lambda}^{b}\} = \frac{4}{3}\delta^{ab} - 2d^{abc}\bar{\lambda}^{c}$ $[\bar{\lambda}^{a}, \bar{\lambda}^{b}] = 2if^{abc}\bar{\lambda}^{c}$

$$L_{C-C} = \left[\sum_{i < j < k} \frac{4}{3} \left(\frac{\lambda_i^c \lambda_j^c}{m_k} + \frac{\lambda_i^c \lambda_k^c}{m_j} + \frac{\lambda_j^c \lambda_k^c}{m_i} \right) + 2d^{abc} \lambda_i^a \lambda_j^b \lambda_k^c \left(\frac{\operatorname{sign}(i)}{m_i} + \frac{\operatorname{sign}(j)}{m_j} + \frac{\operatorname{sign}(k)}{m_k} \right) \right]$$

$$\begin{split} L_{S-S} &= \sum_{i < j < k} \frac{1}{m_i m_j m_k} \left[\frac{4}{3} \left(\frac{\lambda_j^c \lambda_k^c \sigma_j \cdot \sigma_k}{m_i^2} + \frac{\lambda_i^c \lambda_k^c \sigma_i \cdot \sigma_k}{m_j^2} + \frac{\lambda_i^c \lambda_j^c \sigma_i \cdot \sigma_j}{m_k^2} \right) \\ &+ 2d^{abc} \lambda_i^a \lambda_j^b \lambda_k^c \left(\frac{\operatorname{sign}(i)\sigma_j \cdot \sigma_k}{m_i^2} + \frac{\operatorname{sign}(j)\sigma_i \cdot \sigma_k}{m_j^2} + \frac{\operatorname{sign}(k)\sigma_i \cdot \sigma_j}{m_k^2} \right) \\ &- 2\epsilon_{ijk} \sigma_1^i \sigma_2^j \sigma_3^k f^{abc} \lambda_1^a \lambda_2^b \lambda_3^c \left(\frac{1}{m_1^2} + \frac{1}{m_2^2} + \frac{1}{m_3^2} \right) \right], \end{split}$$

$$\begin{split} L_{C-S} &= \sum_{i < j < k} \frac{4}{3} \left\{ \frac{\lambda_j^c \lambda_k^c}{m_i} \left(\frac{\sigma_i \cdot \sigma_j}{m_i m_j} + \frac{\sigma_i \cdot \sigma_k}{m_i m_k} \right) + \frac{\lambda_i^c \lambda_k^c}{m_j} \left(\frac{\sigma_i \cdot \sigma_j}{m_i m_j} + \frac{\sigma_j \cdot \sigma_k}{m_j m_k} \right) + \frac{\lambda_i^c \lambda_j^c}{m_k} \left(\frac{\sigma_i \cdot \sigma_k}{m_i m_k} + \frac{\sigma_j \cdot \sigma_k}{m_j m_k} \right) \right] \\ &+ 2d^{abc} \lambda_i^c \lambda_j^c \lambda_k^c \left[\frac{\operatorname{sign}(i)}{m_i} \left(\frac{\sigma_i \cdot \sigma_j}{m_i m_j} + \frac{\sigma_i \cdot \sigma_k}{m_i m_k} \right) + \frac{\operatorname{sign}(j)}{m_j} \left(\frac{\sigma_i \cdot \sigma_j}{m_i m_j} + \frac{\sigma_j \cdot \sigma_k}{m_j m_k} \right) + \frac{\operatorname{sign}(k)}{m_j} \left(\frac{\sigma_i \cdot \sigma_k}{m_j m_k} + \frac{\sigma_j \cdot \sigma_k}{m_j m_k} \right) \right] \right\} \end{split}$$

where sign(i) = -1 for antiquarks.

QNP2024 - The 10th International Conference on Quarks and Nuclear Physics

Results : Baryons, Tetraquarks, Dibaryons

QNP2024 – The 10th International Conference on Quarks and Nuclear Physics

Baryon fitting

$$H = \sum_{i=1}^{n} \left(m_{i} + \frac{\mathbf{p}_{i}^{2}}{2m_{i}} \right) - \frac{3}{4} \sum_{i < j}^{n} \frac{\lambda_{i}^{c}}{2} \frac{\lambda_{j}^{c}}{2} \left(V_{ij}^{C} + V_{ij}^{CS} \right),$$

$$V_{ij}^{C} = -\frac{\kappa}{r_{ij}} + \frac{r_{ij}}{a_{0}^{2}} - D,$$

$$V_{ij}^{CS} = \frac{\hbar^{2} c^{2} \kappa'}{m_{i} m_{j} c^{4}} \frac{e^{-(r_{ij})^{2}/(r_{0ij})^{2}}}{(r_{0ij}) r_{ij}} \sigma_{i} \cdot \sigma_{j}.$$

$$r_{0ij} = (\alpha + \beta m_{ij})^{-1}, \ \kappa' = \kappa_{0} \left(1 + \gamma m_{ij}\right) \text{ and } m_{ij} = \frac{m_{i} m_{j}}{m_{i} + m_{j}}$$

$$V^{3-body} = AL_{C-C} + BL_{S-S} + CL_{C-S}$$

$$A = -3.67522 \times 10^{-4} \,\text{GeV}^2, \ B = -2.85156 \times 10^{-7} \,\text{GeV}^6, \ C = -7.68351 \times 10^{-6} \,\text{GeV}^4$$

Particle	Experimental Value (MeV)		Variational Parameter (fm^{-2})	Particle			Variational $(f_{\rm ex}^{-2})$
η_c	2983.6	2996.9	a = 13.1	Δ	Value (MeV) 2286.5	(MeV) 2266.7 (2281.6)	Parameters (fm^{-2})
$J\Psi$	3096.9	3089.6	a = 11.1	Λ_c Σ_c	2280.5 2452.9	2200.7 (2281.0) $2441.6 (2480.9)$	$a_1 = 2.9, a_2 = 3.7$ $a_1 = 2.1, a_2 = 3.8$
D	1864.8	1864.1	a = 4.5	Λ	1115.7	$\frac{2441.0}{1113.6} (1134.1)$	$a_1 = 2.1, a_2 = 3.0$ $a_1 = 2.8, a_2 = 2.7$
D^*	2010.3	2010.7	a = 3.7	Σ	1192.6	1196.5 (1231.6)	$a_1 = 2.1, a_2 = 3.1$
π	139.57	139.39	a = 4.6	Σ_c^*	2518.5	2522.9 (2567.7)	$a_1 = 2.0, a_2 = 3.4$
ho	775.11	775.49	a = 2.2	Σ^*	1383.7	1398.9 (1455.2)	$a_1 = 1.9, a_2 = 2.4$
K	493.68	494.62	a = 4.6	p	938.27	980.47 (1005.3)	$a_1 = 2.4, a_2 = 2.4$
K^*	891.66	888.82	a = 2.8	Δ	1232	1272.1 (1346.8)	$a_1 = 1.8, a_2 = 1.8$

The standard deviation is $\sigma = 5.86$.

QNP2024 – The 10th International Conference on Quarks and Nuclear Physics

With 3-quark potential

 $\sigma = 24.44(63.10)$

Three-body color matrices for tetraquarks

 $T_{cc}: \bar{u}\bar{d}cc$

$$\begin{split} f^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{3}^{c} &= \begin{pmatrix} 0 & -4i\sqrt{2} \\ 4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{3}^{c} &= \begin{pmatrix} -\frac{40}{9} & 0 \\ 0 & \frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & 4i\sqrt{2} \\ -4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{4}^{c} &= \begin{pmatrix} -\frac{40}{9} & 0 \\ 0 & \frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{1}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & -4i\sqrt{2} \\ 4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} \frac{40}{9} & 0 \\ 0 & -\frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{2}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & 4i\sqrt{2} \\ -4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{2}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} \frac{40}{9} & 0 \\ 0 & -\frac{20}{9} \end{pmatrix} \end{split}$$

$$|1_{13}1_{24}\rangle, |8_{13}8_{24}\rangle$$
 color basis

 $|3_{12}\overline{3}_{34}\rangle, |\overline{6}_{12}6_{34}\rangle$ color basis

 $\chi_{c1}: \bar{c}\bar{q}cq$

$$\begin{aligned} f^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{3}^{c} &= \begin{pmatrix} 0 & -4i\sqrt{2} \\ 4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{3}^{c} &= \begin{pmatrix} 0 & \frac{20\sqrt{2}}{9} \\ \frac{20\sqrt{2}}{9} & -\frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & 4i\sqrt{2} \\ -4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\overline{\lambda}_{2}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & \frac{20\sqrt{2}}{9} \\ \frac{20\sqrt{2}}{9} & -\frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{1}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & -4i\sqrt{2} \\ 4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{1}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & -\frac{20\sqrt{2}}{9} \\ -\frac{20\sqrt{2}}{9} & \frac{20}{9} \end{pmatrix} \\ f^{abc}\overline{\lambda}_{2}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & 4i\sqrt{2} \\ -4i\sqrt{2} & 0 \end{pmatrix} & d^{abc}\overline{\lambda}_{2}^{a}\lambda_{3}^{b}\lambda_{4}^{c} &= \begin{pmatrix} 0 & -\frac{20\sqrt{2}}{9} \\ -\frac{20\sqrt{2}}{9} & \frac{20}{9} \end{pmatrix} \end{aligned}$$

QNP2024 - The 10th International Conference on Quarks and Nuclear Physics

Three-body potentials in tetraquarks

 $V^{3-body} = AL_{C-C} + BL_{S-S} + CL_{C-S}$

 $A = -3.67522 \times 10^{-4} \,\text{GeV}^2$ $B = -2.85156 \times 10^{-7} \,\text{GeV}^6$ $C = -7.68351 \times 10^{-6} \,\text{GeV}^4$

$$T_{cc}$$
 $(|\mathbf{3}_{12}\overline{\mathbf{3}}_{34}\rangle, |\overline{\mathbf{6}}_{12}\mathbf{6}_{34}\rangle)$

Color	$\sum_{i < j < k} L^{C-C}_{ijk}$	$\sum_{i < j < k} L^{S-S}_{ijk}$	$\sum_{i < j < k} L_{ijk}^{C-S}$
$3_{12}\overline{3}_{34}$	-4.8424	0.0319	20.9444
$\overline{6}_{12}6_{34}$	31.4754	0.0907	8.6177

Unit: MeV

$$V^{3-body} = \begin{pmatrix} 16.134 & 0.7977\\ 0.7977 & 40.1838 \end{pmatrix}$$

$$\chi_{c1}(3872) \quad (|\mathbf{1}_{13}\mathbf{1}_{24}\rangle, |\mathbf{8}_{13}\mathbf{8}_{24}\rangle)$$

Color	$\sum_{i < j < k} L_{ijk}^{C-C}$	$\sum_{i < j < k} L_{ijk}^{S-S}$	$\sum_{i < j < k} L_{ijk}^{C-S}$
$1_{13}1_{24}$	19.3695	0.0427	-1.3654
$8_{13}8_{24}$	7.2636	-0.2793	4.2077

$$V^{3-body} = \begin{pmatrix} 18.0468 \ 15.9512\\ 15.9512 \ 11.1919 \end{pmatrix}$$

Three-body potentials in dibaryons

 $H: uuddss(I = 0, S = 0), (F_1, F_{27})$

Flavor	$\sum_{i < j < k} L_{ijk}^{C-C}$	$\sum_{i < j < k} L_{ijk}^{S-S}$	$\sum_{i < j < k} L_{ijk}^{C-S}$
F_1	-21.0008	17.6644	34.0685
F_{27}	-21.0008	24.1615	-20.3534

$V^{3-body} =$	(30.732	-1.6934
v	(-1.6934)	-17.1928

Unit: MeV

 $N\Omega$: $uudsss(I = 1/2, S = 2), (F_{27}, F_8)$

Flavor	$\sum_{i < j < k} L_{ijk}^{C-C}$	$\sum_{i < j < k} L_{ijk}^{S-S}$	$\sum_{i < j < k} L_{ijk}^{C-S}$	- 2 hada	-19.9824 -3.89157
F_{27}	-19.056	5.3551	-6.2815	$V^{3-boay} =$	$\begin{pmatrix} -19.9824 & -3.89157 \\ -3.89157 & 10.0899 \end{pmatrix}$
F_8	-19.056	1.3458	27.8001		(

Summary

- Inspired by the three-body nuclear force, the three-quark potentials are newly constructed.
- When the three-quark potential is introduced, the baryon results fit better.
- When the three-quark potential is applied to exotic hadrons, it shows

repulsive interaction for dominant states.

Thank you