

Direct observation of the $\rho^0 N$ coupling

M. Korwieser on behalf of ALICE Coll. Technical University of Munich, E62

8th of July 2024 QNP 2024, Barcelona

Vector meson nucleon interaction

- Usually probed by Vector Meson Dominance Models (VMD¹) 1: J. J. Sakurai, Phys. Rev. Lett. 22, 981 (1969)
 - Hadronic contribution to the photon propagator
 - Off-shell vector mesons
- Important to understand...
 - ... in-medium dilepton production
 - ... dynamically generated states N* and Δ* (pole positions) from unitarised chiral perturbation theory (UChPT²)
 2: N. Kaiser, P. B. Siegel and W. Weise, Phys. Lett. B 362, 23 (1995)

Vector meson nucleon interaction

- Test of VMD at HADES
 - \circ Low energy beams (π)
 - M_{ee} excess compared to QED reference
- Excess modeled by
 - with low lying intermediate resonances (R) (N(1440), N(1520), N(1535) in a Rγ*N vertex)
- But how can one access the interaction between the ρ⁰ and nucleon directly?

Femtoscopy in a nutshell

Femtoscopy in a nutshell

L. Fabbietti and V. Mantovani Sarti and O. Vazquez Doce, Ann.Rev.Nucl.Part.Sci.55:357-402, 2005

Measure the correlation function *C*(*k**)

two particle wave function

 $ec{r}^*$

$$C(k^*) = \int S(r^*) \left| \Psi(\vec{k}^*, \vec{r}^*) \right|^2 d^3 r^* \xrightarrow{k^* \to \infty} 1$$

 $\Psi(ec{k}^{*}$

- Measure C(k*), use constrained S(r*), study interaction ALICE, PLB, 811:135849 (2020); ALICE, arXiv:2311.14527 (2023) (Accepted by EPJC)
- For evaluation of integral and *S*(*r**) use CATS framework *D. L. Mihaylov et al. Eur.Phys.J.C* 78 (2018) 5, 394

- HM pp collisions @ 13 TeV
 - 1 Billion events in Run2
- Direct detection of charged particles (π, K, p) by TPC and TOF
- Particle identification
 - Mean energy loss in TPC
 - Momentum reconstruction by TOF
 - $\circ \quad \mbox{Purity of about 99 \% for π, K, p due to excellent PID capabilities}$

Reconstruction of ρ^0

• Pair all π in an event

- Two types of background
 - Combinatorial due to $(\pi\pi)_{\text{Comb.}}$
 - Mini-jet correlations

 $C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + (1 - \lambda_{\rho^0 - p}) \cdot (\boldsymbol{\omega}_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \boldsymbol{\omega}_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*)).$

$$C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + (1 - \lambda_{\rho^0 - p}) \cdot \left[(\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*) \right].$$

- Account for correlation of $(\pi\pi)_{Comb.}$ underneath ρ^0 signal
- Employ sideband (SB) analysis
 - $\circ \quad \mbox{Compute correlation function} \\ selecting \mbox{ρ^0}_{Cand.} \mbox{ from left and right} \\ sideband \ region \end{tabular}$

$$C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + (1 - \lambda_{\rho^0 - p}) \cdot \left[(\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*) \right].$$

- Account for correlation of $(\pi\pi)_{\text{Comb.}}$ underneath ρ^0 signal
- Employ sideband (SB) analysis
 - $\circ \quad \mbox{Compute correlation function} \\ selecting \mbox{ρ^0}_{Cand.} \mbox{ from left and right} \\ sideband region \end{tabular}$
 - Calculate weights by integration
 - Obtain SB correlation by a weighted average

$$C_{\text{measured}}(k^*) = \left[C_{\text{minijet}}(k^*)\right] \left[\lambda_{\rho^0-p} \cdot C_{\rho^0-p}(k^*)\right] + (1-\lambda_{\rho^0-p}) \cdot (\omega_{\text{left}}C_{\text{SB}}^{\text{left}}(k^*) + (1-\omega_{\text{left}})C_{\text{SB}}^{\text{right}}(k^*)).$$

- Mini-jets
 - Partons share a common production (i.e. via gluon splitting)
 - Introduces momentum correlations
 - Contained in signal and SB regions
 - Use sideband correlation functions

$$C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + (1 - \lambda_{\rho^0 - p}) \cdot (\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*)).$$

- Mini-jets
 - Partons share a common production (i.e. via gluon splitting)
 - Introduces momentum correlations
 - Contained in signal and SB regions
 - Use sideband correlation functions

$C_{\text{measured}}(k^*) = \left[C_{\text{minijet}}(k^*)\right] \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*)\right] + (1 - \lambda_{\rho^0 - p}) \cdot (\omega_{\text{left}}C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}})C_{\text{SB}}^{\text{right}}(k^*)).$

• Mini-jets

- Partons share a common production (i.e. via gluon splitting)
- Introduces momentum correlations
- Contained in signal and SB regions
- Use sideband correlation functions
- Residual 2-Body correlations
 - \circ analytical projection in ρ^0 -p system
 - $\circ \quad \mbox{projected}^1 \mbox{ 2-Body correlations} \\ \mbox{flat in ρ^0-p kinematic system} \\$
 - → SB dominated by mini-jets

1: R. Del Grande et. al. EPJC 82 (2022)

$$C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + \left(1 - \lambda_{\rho^0 - p} \right) \cdot \left(\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*) \right).$$

- Weigh each contribution with corresponding λ
 - Depends on the single particle properties (purity and fractions)
 - Dominated by ρ^0 purity amounts to 5%
- Due to small purity extract the genuine ρ^0 -p correlation from data

$$C_{\text{measured}}(k^*) = C_{\text{minijet}}(k^*) \left[\lambda_{\rho^0 - p} \cdot C_{\rho^0 - p}(k^*) \right] + \left(1 - \lambda_{\rho^0 - p} \right) \cdot \left(\omega_{\text{left}} C_{\text{SB}}^{\text{left}}(k^*) + (1 - \omega_{\text{left}}) C_{\text{SB}}^{\text{right}}(k^*) \right).$$

- Weigh each contribution with corresponding λ
 - Depends on the single particle properties (purity and fractions)
 - Dominated by ρ^0 purity amounts to 5%
- Due to small purity extract the genuine ρ⁰-p correlation from data

$$C_{\rho^0-p}(k^*) = \frac{1}{C_{\text{minijet}}} \left\{ \frac{1}{\lambda_{\rho^0-p}} \left[C_{\text{measured}}(k^*) - (1-\lambda_{\rho^0-p})C_{\text{SB}}(k^*) \right] \right\}.$$

ALICE

- Normalized in 600–800 MeV
- λ (= 5%) dominated by ρ^0 purity
- Correct for mini-jet in next step
- Deviation to minijet due to final state interaction

Π First direct observation of the ρ⁰N coupling

- First direct measurement of ρ⁰N coupling
 Far above low lying resonance states traditionally used
- nσ values for
 - < 100 MeV/c: 3.4σ
 - < 120 MeV/c: 4.2σ
 - < 200 MeV/c: 3.9σ
- Coupled channels:
 ρ+n, ωp, φp, K*Λ, K*Σ
 - Other N* and Δ * states (4* in PDG)
 - N*(1700) below threshold (1713 MeV)

TIP Prediction from UChPT for ρ^0 –p

- Prediction obtained within UChPT for S=0
 - Coupled channels: ρ^+ n, ωp, ϕ p, K*Λ, K*Σ
 - Includes dynamical states N*(1700) and N*(2000)

• Obtain estimate for
$$\rho^0$$
– p

- Use ϕ -p CF result¹ to fit parameters
- Data needed to constrain a_{pN} which is tightly coupled to pole position of N*(1700)

1: ALICE PRL 127 (2021)

Comparing to UChPT

Data provide a unique constraint on the pole position of the N*(1700)

Essential Takeaways

- First direct measurement of ρ⁰N coupling
 - Far above low lying resonance states traditionally used
 - nσ values for k* < 200 MeV/c: 3.9σ
- What's next?
 - Employ UChPT to fit the data
 - Provide unique constraints on pole position of the N*(1700)

Essential Takeaways

- First direct measurement of ρ⁰N coupling
 - Far above low lying resonance states traditionally used
 - no values for $k^* < 200 \text{ MeV}/c$: 3.90
- What's next?
 - Employ UChPT to fit the data
 - Provide unique constraints on pole position of the N*(1700)

THANK YOU!

Back-up

UChPT - Plots

Comparison with model (courtesy of A. Feijoo)

- Use ϕ -p result to fit parameters of UChPT
 - employs coupled channel approach
 - Weights obtained using
 - Thermal model
 - kinematic toy model (Kp)
- Obtain estimate for ap

Comparison with model (courtesy of A. Feijoo)

- Use φ-p result to fit parameters of UChPT
- Modification of dynamically generated states
 - PDG links:
 - <u>N*(~1700) (3/2-)</u> (3*)
 - N*(~2000) (1/2-) (4*) (not clear if this is the correct state 1895, formerly 2090)

Threshold - Plots

Π First direct observation of the ρ⁰N coupling

Resonances < 1700 MeV

Resonance	B.R. (%)	k* (MeV)
N(1440)+	0.0133	-
N(1520)+	0.0667	-
N(1535)+	0.0067	-
N(1650)+	0.0267	-
N(1675)+	0.0067	-
N(1680)+	0.03	-

Resonances > 1700 MeV

rho-p	
1713	

Resonance	B.R. (%)	k* (MeV)
Delta(1700)+	0.2	-
N(1710)+	0.05	-
N(1720)+	0.255	77.16
N(1875)+	0.02	379.76
Delta(1930)+	0.22	442.97
N(2190)+	0.0333	680.33
N(2250)+	0.0533	727.49
N(2600)+	0.0533	976.04

Old measurement - Plots

Motivation

- ALICE measurements of ρ⁰
 - Γ = 150 MeV
 - *m* = 775 MeV

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

Motivation

ALICE measurements of ρ⁰

- Important to constrain Vector Meson Dominance Models/ Vector Meson-Baryon interactions
 - couplings; scattering param.
 - validating theoretical approaches
 - First time direct measurement
- Further the understanding of dynamically generated states N^{*} and Δ^* (pole positions) from UChPT
- Good candidate to search for signatures of chiral symmetry restoration

[○] Γ = 150 MeV

[•] *m* = 775 MeV

Maximilian Korwieser | TUM E62 | max.korwieser@tum.de

Vector meson nucleon coupling

- Important to constrain Vector Meson Dominance Models/Vector Meson-Baryon interactions
- Usually probed by low energy experiments (HADES)
 - Access the time like form factor $(q^2 > 0!)$
 - Test of VDM (Rγ*N vertex) with low lying intermediate resonances N(1440), N(1520), N(1535)
- Important to understand
 - In-medium dilepton production
 - \circ $\,$ Dynamically generated states N* and Δ^* (pole positions) from UChPT $\,$

MC - Plots

Constraining the minijet MC

3

2.5

 $C(k^*)$

ρ⁰-p (SBv1)

minijet (SBv1)

Constraining the minijet MC

3

2.5

 $C(k^*)$

\mathbf{M}^{0} -p without SB and divided for Minijet MC

- Consistent with unity
- No structures
- Re-run whole chain now that trains are available again (anchored to META_17)
 o include META_16 and META_18

Ancestor Method for ρ (MC only)

- For the fit to data MC UA and MC CA (no reso.) will be used
- In MC no f0 and f2