Effective Lagrangians and thermal resonances under extreme conditions

Andrea Vioque Rodríguez, Angel Gómez Nicola and Jacobo Ruiz de Elvira

Universidad Complutense de Madrid

Effective Lagrangians and thermal resonances under extreme conditions

Outline

- 1 Aspects of the QCD phase diagram
- Scattering and Resonances within finite-T Unitarized ChPT
- 3 Saturating scalar susceptibilities with light thermal resonances
- Pion scattering and critical temperature at nonzero chiral imbalance

QCD transition

A. Bazavov, Quark Matter 2017

- Crossover-like transition in the physical case ($N_f = 2 + 1$, massive quarks)
- Phase transition in light chiral limit for $N_f = 2$, possibly of second order

• • = • • = •

Signals of Chiral Symmetry Restoration

Inflection point for the light quark condensate $\langle \bar{q}q \rangle_I$

Subtracted quark condensate: $\Delta_{l,s} = m_s \langle \bar{q}q \rangle_l - 2m_l \langle \bar{s}s \rangle$ (avoids lattice divergences)

< ロ > < 同 > < 三 > < 三 >

Scattering and Resonances within finite-T Unitarized ChPT

Unitarized meson scattering from thermal unitarity including physical thermal-bath processes:

$$IAM: \quad t_{IAM}(s, T) = \frac{t_2(s)^2}{t_2(s) - t_4(s, T)} \qquad M_a \neq M_b$$

scattering πK
$$Im t_{IAM}(s, T) = \begin{cases} \sigma_{ab}^T(s) [t_{IAM}(s, T)]^2, & s \ge (M_a + M_b)^2 \text{ (unit.cut)} \\ \tilde{\sigma}_{ab}^T(s) [t_{IAM}(s, T)]^2, & 0 \le s \le (M_a - M_b)^2 \text{ (Landau thermal cut)} \end{cases}$$

Thermal phase space:
$$\int \sigma_{ab} = M_a^2 - M_b^2$$

$$Thermal phase space:$$
$$\int \sigma_{ab}(s) \left[1 + n_B \left(\frac{s + \Delta_{ab}}{2\sqrt{s}} \right) + n_B \left(\frac{s - \Delta_{ab}}{2\sqrt{s}} \right) \right] \qquad (1 + n_a)(1 + n_b)$$

$$\tilde{\sigma}_{ab}^T(s) = \sigma_{ab}(s) \left[n_B \left(\frac{\Delta_{ab} - s}{2\sqrt{s}} \right) - n_B \left(\frac{s + \Delta_{ab}}{2\sqrt{s}} \right) \right] \qquad (1 + n_b)(1 + n_b)$$

$$\int \sigma_{ab}^T(s) = \sigma_{ab}(s) \left[n_B \left(\frac{\Delta_{ab} - s}{2\sqrt{s}} \right) - n_B \left(\frac{s + \Delta_{ab}}{2\sqrt{s}} \right) \right] \qquad (1 + n_b)(1 + n_b)$$

Scattering and Resonances within finite-T Unitarized ChPT

Effective Lagrangians and thermal resonances under extreme conditions

S.Ferreres-Solé, A. Gómez Nicola, AVR, PRD99, 036018 (2019)

 χ_{S} saturated by lightest IJ = 00 state, i.e. $f_{0}(500)$ generated in unitarized finite-T $\pi\pi$ scattering

 $M_S^2(T) = \operatorname{Re} s_p(T) \sim \operatorname{Re} \Sigma_{f_0}$ behaves as p = 0 thermal mass in this channel (scaling near T_c checked with LSM analysis)

• Reproduces expected peak $T_c \sim 158 \text{ MeV}$

 $\chi_{\mathcal{S}}(\mathcal{T}) \simeq \chi_{\mathcal{S}}(0) \frac{M_{\mathcal{S}}^2(0)}{M_{\mathcal{S}}^2(\mathcal{T})}$

- Agrees with lattice below the peak within uncertainties
- Consistent T_c reduction and χ_S growth near chiral limit

LECs FLAG coll. Hanhart, Peláez, Ríos PRL100 (2008)

Thermal interactions crucial!

$I=1/2~{ m sector}~({ m K}/\kappa)$

 $K^{b} = i\bar{q}\gamma_{5}\lambda^{b}q \xleftarrow{SU(2)_{A}}{U(1)_{A}} \kappa^{b} = \bar{q}\lambda^{b}q \quad \begin{array}{c} \text{degenerate under both } O(4) \text{ and } U(1)_{A} \\ \text{(lowest states } K \text{ and } K_{0}^{*}(700)/\kappa) \end{array}$

Reconstructed susceptibilities from WIs and lattice condensate data

$I=1/2~{ m sector}~({ m K}/\kappa)$

From WIs in this sector:

- In physical case strength of U(1)_A above T_c well determined and driven by ⟨s̄s⟩.
- In $N_f = 2$ limit, exact $O(4) \times U(1)_A$ degeneration for $m_I, \langle \bar{q}q \rangle_I \to 0$.

$$m_s \gg m_l$$
: $\chi_S^{\kappa}(T) - \chi_P^{\kappa}(T) \Big|_{m_s \gg m_l} = \frac{2}{m_s} \langle \bar{q}q \rangle_l \Big|_{SU(2)} + \mathcal{O}(1/m_s^2)$

• May help to clarify the role of strangeness.

χ^{κ}_{S} saturated by $I=1/2~K^{*}_{0}(700)$ scalar pole

Effective Lagrangians and thermal resonances under extreme conditions

Chiral imbalance in ChPT

 $\mu_{\rm 5}$ chemical potential for approximate conservation of the chiral charge.

QCD Lagrangian for $\mu_5 \neq 0$: $\mathcal{L}_{QCD} \rightarrow \mathcal{L}_{QCD} + \mu_5 \bar{q} \gamma_5 \gamma^0 q$

We have constructed the most general meson effective Lagrangian for $\mu_5 \neq 0$ and two light flavours.

The construction is carried out using the framework of the external source method.

New terms coming from:

- Covariant derivatives.
- Explicit axial source terms.

$\mathcal{O}(p^2)$ and $\mathcal{O}(p^4)$ effective Lagrangian

$$\mathcal{L}_{2} \to \mathcal{L}_{2} + 2\mu_{5}^{2}F^{2}(1+\kappa_{0})$$

$$\mathcal{L}_{4} \to \mathcal{L}_{4} + \kappa_{1}\mu_{5}^{2}\mathrm{tr}\left(\partial^{\mu}U^{\dagger}\partial_{\mu}U\right) + \kappa_{2}\mu_{5}^{2}\left(\partial_{0}U^{\dagger}\partial^{0}U\right) + \kappa_{3}\mu_{5}^{2}\mathrm{tr}\left(\chi^{\dagger}U + U^{\dagger}\chi\right) + \kappa_{4}\mu_{5}^{4}$$

$$\uparrow$$
constants to be determined from different observables

D. Espriu, A. Gómez Nicola, AVR, JHEP. 2020, 62

Quark condensate and critical temperature at NNLO

An alternative method for calculating T_c :

Peak of
$$\chi_S(T,\mu_5) = \chi_S(T=0,\mu_5) \frac{M_S^2(0,\mu_5)}{M_S^2(T,\mu_5)}$$
 Scattering $\pi\pi$ at nonzero μ_5

Pion scattering, $T_c(\mu_5)$ and fits of κ_i to lattice

 $\mu_{\rm 5}$ corrections to the pion scattering amplitude:

- Tree level coming from \mathcal{L}_4 .
- Dispersion relation.
- Residue of the LSZ formula.

$$\Delta t^{00} \Longrightarrow \begin{array}{c} \kappa_1' = 6\kappa_1 + 5\kappa_2 \\ \kappa_2' = -8\kappa_1 - 4\kappa_2 + 5\kappa_3 \end{array}$$

A. Gómez Nicola, Patricia Roa-Bravo, AVR, PRD **109** (2024) no.3, 034011

Combined fit of χ_{top} and T_c :

$\kappa_1 \times 10^4$	$\kappa_2 \times 10^4$	$\kappa_3 imes 10^4$	$\chi^2/{ m dof}$
$9.4^{+1.1}_{-1.3}$	$-4.5_{-1.4}^{+1.5}$	$3.6^{+9.1}_{-8.7}$	1.37

Conclusions

- Scalar thermal resonances crucial for chiral and $U(1)_A$ restorations.
- Saturating χ_S with thermal $f_0(500)$, we reproduce the crossover peak of χ_S and most of the lattice data fall into the uncertainty band.
- K/κ alternative channel for $O(4) \times U(1)_A$ restoration.
- Saturated χ_{S}^{κ} with thermal $K_{0}^{*}(700)$ develops a peak and is consistent with $O(4) \times U(1)_{A}$ pattern.
- We have analyzed the effective chiral Lagrangian for nonzero chiral imbalance for two light flavours.
- The critical temperature increases with μ_5 , in agreement with the lattice results.