Effective Lagrangians and thermal resonances under extreme conditions

Andrea Vioque Rodríguez, Angel Gómez Nicola and Jacobo Ruiz de Elvira

Universidad Complutense de Madrid

Outline

- Aspects of the QCD phase diagram
- Scattering and Resonances within finite-T Unitarized ChPT
- 3 Saturating scalar susceptibilities with light thermal resonances
- 4 Pion scattering and critical temperature at nonzero chiral imbalance

QCD transition

A. Bazavov, Quark Matter 2017

- Crossover-like transition in the physical case ($N_f = 2 + 1$, massive quarks)
- Phase transition in light chiral limit for $N_f = 2$, possibly of second order

Signals of Chiral Symmetry Restoration

Inflection point for the light quark condensate $\langle \bar{q}q \rangle_I$

Subtracted quark condensate: $\Delta_{l,s} = m_s \langle \bar{q}q \rangle_l - 2m_l \langle \bar{s}s \rangle$ (avoids lattice divergences)

A. Bazavov et al PRD85, 054503 (2012)

Peak of scalar susceptibility

$$\chi_{S} = -\frac{\partial}{\partial m_{I}} \langle \bar{q}q \rangle_{I}$$

H. T. Ding et al PRL123, 062002 (2019)

Scattering and Resonances within finite-T Unitarized ChPT

Unitarized meson scattering from thermal unitarity including physical thermal-bath processes:

IAM:
$$t_{IAM}(s, T) = \frac{t_2(s)^2}{t_2(s) - t_4(s, T)}$$

 $M_a \neq M_b$ scattering πK

$$\operatorname{Im} t_{IAM}(s,T) = \begin{cases} \sigma_{ab}^T(s) \left[t_{IAM}(s,T) \right]^2, & s \geq (M_a + M_b)^2 \text{ (unit.cut)} \\ \tilde{\sigma}_{ab}^T(s) \left[t_{IAM}(s,T) \right]^2, & 0 \leq s \leq (M_a - M_b)^2 \text{ (Landau thermal cut)} \end{cases}$$

Thermal phase space:

$$\Delta_{ab} = M_a^2 - M_b^2$$

$$\sigma_{ab}^{T}(s) = \sigma_{ab}(s) \left[1 + n_B \left(\frac{s + \Delta_{ab}}{2\sqrt{s}} \right) + n_B \left(\frac{s - \Delta_{ab}}{2\sqrt{s}} \right) \right]$$
 (1 + n_a)(1 + n_b

$$(1+n_a)(1+n_b)$$

$$\tilde{\sigma}_{ab}^{T}(s) = \sigma_{ab}(s) \left[n_B \left(\frac{\Delta_{ab} - s}{2\sqrt{s}} \right) - n_B \left(\frac{s + \Delta_{ab}}{2\sqrt{s}} \right) \right] \longrightarrow \dots$$
two-body $T = 0$ phase space

Scattering and Resonances within finite-T Unitarized ChPT

- M_p^{κ} stays constant up to temperatures around $T \sim 75$ MeV, from which it shows a decreasing behavior.
- Γ_p^{κ} increases at low temperatures and decreases for T closer to T_c .
- Similar behavior to that of the $f_0(500)$.

$$K_0^*(700)/\kappa(I=1/2,J=0)$$

T = 0 LECs: Molina, Ruiz de Elvira JHEP2020

$$K^*(892)(I = 1/2, J = 1)$$

- Softer temperature dependence.
- SU(3) limit ($M_K = 350 \,\text{MeV}$):
 - $\rightarrow \Gamma_p^{K^*}$ doubles its value from T = 0 to T = 200 MeV.

A. Gómez Nicola, J. R. de Elvira and AVR, JHEP **08** (2023), 148

Saturating scalar susceptibilities with light thermal resonances

S.Ferreres-Solé, A. Gómez Nicola, AVR, PRD99, 036018 (2019)

 χ_S saturated by lightest IJ = 00 state, i.e. $f_0(500)$ generated in unitarized finite-T $\pi\pi$ scattering

$$\chi_{\mathcal{S}}(T) \simeq \chi_{\mathcal{S}}(0) \frac{M_{\mathcal{S}}^2(0)}{M_{\mathcal{S}}^2(T)}$$

 $M_s^2(T) = \operatorname{Re} s_p(T) \sim \operatorname{Re} \Sigma_{f_0}$ behaves as p = 0 thermal mass in this channel (scaling near T_c checked with LSM analysis)

- Reproduces expected peak $T_c \sim 158 \text{ MeV}$
- Agrees with lattice below the peak within uncertainties
- Consistent T_c reduction and χ_S growth near chiral limit

LECs FLAG coll. Hanhart, Peláez, Ríos PRL100 (2008)

Thermal interactions crucial!

I = 1/2 sector (K/κ)

$$K^b = i\bar{q}\gamma_5\lambda^b q \xleftarrow{SU(2)_A}{U(1)_A} \kappa^b = \bar{q}\lambda^b q \qquad \text{degenerate under both } O(4) \text{ and } U(1)_A$$
 (lowest states K and $K_0^*(700)/\kappa$)

Reconstructed susceptibilities from WIs and lattice condensate data

I = 1/2 sector (K/κ)

From WIs in this sector:

$$\chi_S^{\kappa}(T) - \chi_P^K(T) = \frac{2}{m_s^2 - m_l^2} \Delta_{l,s}(T)$$
 dictated by subtracted condensate

- In physical case strength of $U(1)_A$ above T_c well determined and driven by $\langle \bar{s}s \rangle$.
- In $N_f=2$ limit, exact $O(4) \times U(1)_A$ degeneration for $m_I, \langle \bar{q}q \rangle_I \to 0$.

$$m_s \gg m_l$$
: $\chi_S^{\kappa}(T) - \chi_P^{\kappa}(T)|_{m_s \gg m_l} = \frac{2}{m_s} \langle \bar{q}q \rangle_I |_{SU(2)} + \mathcal{O}(1/m_s^2)$

• May help to clarify the role of strangeness.

χ_S^{κ} saturated by $I=1/2~K_0^*(700)$ scalar pole

$$\chi_{S}^{\kappa} = \chi_{S}^{\kappa, ChPT}(0) \frac{M_{\kappa}^{2}(0)}{M_{\kappa}^{2}(T)}$$

- The peak is reproduced.
- Chiral limit ($M_{\pi} = 20 \,\text{MeV}$):
 - ightarrow Larger growth below peak enhanced by chiral symmetry.

 $K - \kappa$ degeneration takes place at a lower temperature.

- *SU*(3) limit:
 - → Peak grows.
 - ightarrow Displacement of the peak towards T_c .

Consistently with its degeneracy with χ_5 .

Chiral imbalance in ChPT

 μ_{5} chemical potential for approximate conservation of the chiral charge.

QCD Lagrangian for
$$\mu_5 \neq 0$$
: $\mathcal{L}_{QCD} \rightarrow \mathcal{L}_{QCD} + \mu_5 \bar{q} \gamma_5 \gamma^0 q$

We have constructed the most general meson effective Lagrangian for $\mu_5 \neq 0$ and two light flavours.

The construction is carried out using the framework of the external source method.

New terms coming from:

- Covariant derivatives.
- Explicit axial source terms.

$\mathcal{O}(p^2)$ and $\mathcal{O}(p^4)$ effective Lagrangian

$$\mathcal{L}_{2} \rightarrow \mathcal{L}_{2} + 2\mu_{5}^{2}F^{2}\left(1 + \kappa_{0}\right)$$

$$\mathcal{L}_{4} \rightarrow \mathcal{L}_{4} + \kappa_{1}\mu_{5}^{2}\mathrm{tr}\left(\partial^{\mu}U^{\dagger}\partial_{\mu}U\right) + \kappa_{2}\mu_{5}^{2}\left(\partial_{0}U^{\dagger}\partial^{0}U\right) + \kappa_{3}\mu_{5}^{2}\mathrm{tr}\left(\chi^{\dagger}U + U^{\dagger}\chi\right) + \kappa_{4}\mu_{5}^{4}$$

$$\uparrow$$

constants to be determined from different observables

D. Espriu, A. Gómez Nicola, AVR, JHEP. 2020, 62

Quark condensate and critical temperature at NNLO

An alternative method for calculating T_c :

Peak of
$$\chi_S(T, \mu_5) = \chi_S(T = 0, \mu_5) \frac{M_S^2(0, \mu_5)}{M_c^2(T, \mu_5)}$$

Scattering $\pi\pi$ at nonzero $\mu_{\rm 5}$

Pion scattering, $T_c(\mu_5)$ and fits of κ_i to lattice

 μ_5 corrections to the pion scattering amplitude:

- Tree level coming from \mathcal{L}_4 .
- Dispersion relation.
- Residue of the LSZ formula.

 $\Delta t^{00} \Longrightarrow_{\kappa_2'}^{\kappa_1'} = 6\kappa_1 + 5\kappa_2$ $\kappa_2' = -8\kappa_1 - 4\kappa_2 + 5\kappa_3$ 15 $\chi_S(T)$ $\chi_{5}(0)$ K_{1.2.3} Fit 10 us=475 MeV $\mu_5 = 300 \text{ MeV}$ u₅=0 MeV 5 100 120 140 160 180 200 80 T (MeV)

A. Gómez Nicola, Patricia Roa-Bravo, AVR, PRD **109** (2024) no.3, 034011

Combined fit of χ_{top} and T_c :

$\kappa_1 \times 10^4$	$\kappa_2 \times 10^4$	$\kappa_3 \times 10^4$	$\chi^2/{\sf dof}$
$9.4_{-1.3}^{+1.1}$	$-4.5^{+1.5}_{-1.4}$	$3.6^{+9.1}_{-8.7}$	1.37

The growing behaviour of $T_c(\mu_5)$ is compatible with lattice results

Conclusions

- Scalar thermal resonances crucial for chiral and $U(1)_A$ restorations.
- Saturating χ_S with thermal $f_0(500)$, we reproduce the crossover peak of χ_S and most of the lattice data fall into the uncertainty band.
- K/κ alternative channel for $O(4) \times U(1)_A$ restoration.
- Saturated χ_S^{κ} with thermal $K_0^*(700)$ develops a peak and is consistent with $O(4) \times U(1)_A$ pattern.
- We have analyzed the effective chiral Lagrangian for nonzero chiral imbalance for two light flavours.
- The critical temperature increases with μ_5 , in agreement with the lattice results.