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0 Aspects of the QCD phase diagram
@ Scattering and Resonances within finite-T Unitarized ChPT
9 Saturating scalar susceptibilities with light thermal resonances

@ Pion scattering and critical temperature at nonzero chiral imbalance
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QCD transition

govibnierse The Phases of QCD
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A. Bazavov, Quark Matter 2017
@ Crossover-like transition in the physical case (Nf = 2 + 1, massive quarks)

@ Phase transition in light chiral limit for Ny = 2, possibly of second order
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Signals of Chiral Symmetry Restoration

Inflection point for the

R "
. _ ),
light quark condensate (gq), w1 s
08 :?‘4# A. Bazavov
Subtracted quark condensate: asgatNago 1Y et al PRDSS,
— — L =120
As = ms<qq>/ — 2m/(ss> 4T bisatee: et x *'%E“ 054503 (2012)
. . . R
(avoids lattice divergences) 02 Noee R
N,=8, m=0.037m, + w g,
ol soutoont & o AR
120 140 160 180 200
700
e M
Peak of scalar susceptibility eoo ‘/ %
500 [ N8 4
/ H. T. Ding
b 400 st
Xs = _am <qq>/ 200 / P P et al PRL123
/ 200 A e 062002 (2019)
oo
100 e g @g=
=a T [MeV]
0
130 135 140 145 150 155 160 165 170 175 180
v
gians and thermal resonances under extreme conditions 4/14




Scattering and Resonances within finite-T Unitarized ChPT

Unitarized meson scattering from thermal unitarity including physical
thermal-bath processes:

IAM:  tiam(s, T) = __ Bl Ma # My
to(s) — ta(s, T) scattering 7K

Im tiam(s, T) = ‘7;’;;(5) [tiam(s, T)]27 s > (Ma + Mp)? (unit.cut)
, &1.(s) [tiam(s, T3, 0<s<(Ms— Mp)? (Landau thermal cut)

Ny = M2 — M2
Thermal phase space: /

ol (s) = oab(s) [1 + ng (S;\?gﬁ + ng (

5;(5) = gap(S) [nB (%L\;) —ng (s;\%b
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two-body T = 0 phase space




Scattering and Resonances within finite-T Unitarized ChPT

@ M stays constant up to
sl Tet50 Mev temperaFure's around T ~ 75 MeV,
from which it shows a decreasing
\ behavior.
o 300 .
= & [ * @ [ increases at low temperatures
B - // ‘ ’ \=OM{ and decreases for T closer to Tc.
_{/_/ AN Method 1 @ Similar behavior to that of the
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Saturating scalar susceptibilities with light thermal resonances

S.Ferreres-Solé, A. Gémez Nicola, AVR, PRD99, 036018 (2019)

Xs saturated by lightest IJ = 00 state, i.e. f5(500)
generated in unitarized finite-T 77 scattering

7Y ~ v<(0 MZ(0) MZ(T) = Res,(T) ~ ReXg
XS( ) = XS( )M2(T) behaves as p = 0 thermal mass in this channel
° (scaling near T. checked with LSM analysis)
0.14]
2 -
= [xs(T)-Xs(0)] A
@ Reproduces expected peak oo M a
: =AcChPT =
Te ~ 158 MeV N Y e :
s Y.Aokietal
@ Agrees with lattice below the peak 0.081  —— Thermal f0(500) saturated 4
o h - B ood T LEC uncertainty band /{-/; +
within uncertainties G uncertainy band £ 4
0.02 - one looj
@ Consistent T, reduction and xs o
growth near chiral limit R
) o

LECs FLAG coll. Hanhart, Peldez, Rios PRL100 (2008)

Thermal interactions crucial!
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| =1/2 sector (K/

. 5U(2)a _ degenerate under both O(4) and U(1)a
b_ b b _ z\b
K2 =iqrsXq v, T a\°q (lowest states K and K;(700)/x)

Reconstructed susceptibilities from WIls and lattice condensate data
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| =1/2 sector (K/k)

From WIs in this sector:
XE(T)—x8(T) = ﬁ A s(T) «— dictated by subtracted condensate

@ In physical case strength of U(1)a above T, well determined and
driven by (Ss).

@ In N¢ =2 limit, exact O(4) xU(1)a degeneration for my, (§q); — 0.

2
ms > miz | X5(T) = XE(T)| 5, = 7 (01| sy + O(L/m3)

@ May help to clarify the role of strangeness.
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X% saturated by | =1/2

*(700) scalar pole

Method 2 (physical case)
IAM (physical case)
———- 1AM (M, =20 MeV)
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@ The peak is reproduced.
@ Chiral limit (M; = 20 MeV):
—> Larger growth below peak
enhanced by chiral symmetry.

!

K — k degeneration takes
place at a lower temperature.

@ SU(3) limit:
— Peak grows.
— Displacement of the peak
towards T¢.

!

Consistently with its
degeneracy with xs.
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Chiral imbalance in ChPT

ws chemical potential for approximate conservation of the chiral charge.

QCD Lagrangian for s # 0: Locp — Lqcp + 115G757°q

We have constructed the most general meson effective Lagrangian for 15 # 0 and
two light flavours.

The construction is carried out using the New terms coming from:

framework of the external source @ Covariant derivatives.

method. o )
@ Explicit axial source terms.

o

O(p?) and O(p*) effective Lagrangian

Lo — Lo+ 2u2F? (1 + ko)
L4 — La+ r1pdtr (0"UT0,U) + ropd (00UT°U) + kapdtr (XU + UTX) + rapd
T

constants to be determined from different observables

D. Espriu, A. Gémez Nicola, AVR, JHEP. 2020, 62

Effective Lagrangians and thermal resonances under extreme conditions



Quark condensate and critical temperature at NNL
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An alternative method for calculating T.:

Mg(ov M5)

Peak of xs(T,us) = xs(T =0, #S)W
s\/!

Scattering 7 at nonzero s
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Pion scattering, T.(us) and fits of k; to lattice

s corrections to the pion A. Gémez Nicola, Patricia Roa-Bravo, AVR, PRD 109 (2024) no.3,
scattering amplitude: 034011

@ Tree level coming from Ls. sl i o o md T

@ Dispersion relation.

. k1 X 10* | kp x 10% | k3 x 10* | x?/dof
@ Residue of the LSZ formula.
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Conclusions

@ Scalar thermal resonances crucial for chiral and U(1)a restorations.

e Saturating xs with thermal f,(500), we reproduce the crossover peak
of xs and most of the lattice data fall into the uncertainty band.

e K/k alternative channel for O(4) x U(1)a restoration.

o Saturated x% with thermal K;(700) develops a peak and is consistent
with O(4) x U(1) pattern.

@ We have analyzed the effective chiral Lagrangian for nonzero chiral
imbalance for two light flavours.

@ The critical temperature increases with us, in agreement with the
lattice results.
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