# Search for η'- mesic nuclei with the WASA detector at GSI-FRS

R. Sekiya<sup>1,2</sup> for the GSI-S490 collaboration <sup>1</sup>Kyoto Univ., <sup>2</sup>RIKEN

QNP2024 - The 10th International Conference on Quarks and Nuclear Physics

10 July 2024, Universitat de Barcelona



### Meson mass and symmetry in QCD



### η′ meson in-medium

### η'-meson in vacuum

- $M_{\eta'}$  = 958 MeV/c<sup>2</sup> (especially large) due to
  - Chiral symmetry breaking.
  - U<sub>A</sub>(1) anomaly.

η'-meson in nuclei

- Partial restoration of chiral symmetry.
- Reduction of Mn' is predicted.





### η' meson in-medium

### $\eta'$ -meson in vacuum

- $M_{\eta'}$  = 958 MeV/c<sup>2</sup> (especially large) due to
  - Chiral symmetry breaking.
  - U<sub>A</sub>(1) anomaly.

η'-meson in nuclei

- Partial restoration of chiral symmetry.
- Reduction of  $M_{n'}$  is predicted.



→ Attractive potential :  $V_{\eta'A}(r) = \Delta M_{\eta'}(\rho_0) (\rho(r)/\rho_0)$ 

- Bound states are expected ( $\eta'$ -mesic nuclei)
- → Study of in-medium properties

#### Direct search for $\eta'$ -mesic nuclei in 2014 (GSI-S437)



Y. K. Tanaka et al., Phys. Rev. C 97, 015202 (2018)

### Direct search for $\eta'$ -mesic nuclei in 2022 (GSI-S490)



Y. K. Tanaka et al., Phys. Rev. C 97, 015202 (2018)

### Direct search for $\eta'$ -mesic nuclei in 2022 (GSI-S490)



6

#### Direct search for $\eta'$ -mesic nuclei in 2022 (GSI-S490)



7

### Experimental setup for n'-mesic nuclei spectroscopy in 2022 8



### WASA-at-FRS experiment conducted in 2022 Feb



9

**Forward deuteron PID** 



### Inclusive excitation-energy spectrum

Evaluated excitation-energy from d momentum.

Only for on-site audiences

Consistent result with the previous experiment in 2014.

### WASA detectors analysis (PSB)

- PSB analysis for  $\Delta E$  and hit timing.
  - 2.5 GHz waveform data analysis.
  - Software QDC and CFD analysis.







Newly Developed PSB (R.Sekiya et.al., NIM A 1034 (2022) 166745)

### WASA detectors analysis (PSB)

- PSB analysis for ΔE and hit timing.
  - 2.5 GHz waveform data analysis.
  - Software QDC and CFD analysis.



Csl

**PSFE** 

**PSB** 

**PSBE** 

### WASA detectors analysis (MDC)

- MDC Tracking for momentum measurement.
  - Track Finding in X-Y plane with Elastic Arm Algorithm.
    - Hit wires selection with given PSB hits.
  - Tracking with Kalman Filter.
    - σ (residual) ~ 200 [um]





### PID by WASA detector (ΔE-P)



PID with WASA detector is nicely achieved

## PID by TOF inside WASA



**PID Summary** 



- Particle identification with the WASA is nicely achieved.
- Evaluation of ( $\beta$ , P,  $\Delta$ E) resolution are ongoing for reasonable p selection.
- Averaged momentum from (β, P, ΔE) will give much better p-π separation at P ~ 1 GeV/c.

## Summary

- We performed missing-mass spectroscopy in  ${}^{12}C(p,dp)$  reaction to search for  $\eta'$ -mesic nuclei at the FRS in GSI in 2022.
  - d momentum measurement with the FRS.
  - p selection with the WASA detector.
  - 3.5 days physics run and 1.1×10<sup>7</sup> d events are accumulated.
- The forward d identification and evaluation of excitation energy have been done.
  - The inclusive spectra is consistent with the previous experiment in 2014.
- PID in the WASA detector is nicely working with measured P,  $\Delta E$  and  $\beta$ .
  - Evaluation of (P,  $\Delta E$ ,  $\beta$ ) resolution is ongoing for reasonable p selection.
  - Averaged momentum with (P, ΔE, β) will give better p-π separation in our region of interest (P ~ 1 GeV/c).
- Discussion on the semi-exclusive spectrum and physics interpretation in our collaboration group.
- Final semi-exclusive spectrum will be coming soon.

## Backup

#### Theoretical spectra with Green's function methods



FIG. 8. Calculated spectra of the <sup>12</sup>C(p,d)<sup>11</sup>C  $\otimes \eta'$  reaction for the formation of  $\eta'$ -nucleus systems with proton kinetic energy  $T_p = 2.5 \text{ GeV}$ and deuteron angle  $\theta_d = 0^\circ$  as functions of the excited energy  $E_{\text{ex}}$ .  $E_0$  is the  $\eta'$  production threshold. Various combinations of the potential strength are considered within the range of  $V_0 = -50-200 \text{ MeV}$  and  $W_0 = -5-20 \text{ MeV}$  as indicated in the figure. The thick solid lines show the total spectra and dashed lines indicate subcomponents. The neutron-hole states are indicated as  $(n\ell_j)_n^{-1}$  and the  $\eta'$  states as  $\ell_{\eta'}$ .

#### FRS optics analysis

Elastic d(p,d)p reaction with
IFRS
different FRS scaling factors.



Scale factor f = -2%



#### FRS optics analysis

 Elastic d(p,d)p reaction with different FRS scaling factors.



Scale factor f = -1%



#### FRS optics analysis

Elastic d(p,d)p reaction with
Gradifferent FRS scaling factors.



Scale factor f = 0%



24

#### FRS optics analysis

Elastic d(p,d)p reaction with
Gradifferent FRS scaling factors.



Scale factor f = +1%



#### FRS optics analysis

Elastic d(p,d)p reaction with
Gradifferent FRS scaling factors.



Scale factor f = +2%



Horizontal angle at S4 [mrad]

### n'- nucleus optical potential

#### **Experimental values**

[5]

 $Im(a_{n'p}) = 0.37 \text{ fm}$ 

 $Re(a_{n'p}) = 0 \pm 0.43 \text{ fm}$ 

#### **CBELSA / TAPS**

<u>COSY-11</u>

 $V_0 = -39 \pm 7_{stat} \pm 15_{syst} \text{ MeV}^{[1,2]}$  $W_0 = -13 \pm 3_{stat} \pm 3_{syst} \text{ MeV}^{[3,4]}$ 

 $|V_0| < 38 \, \text{MeV}$ 

n'-nucleus optical potential

$$V_{\eta'}(r) = (V_0 + i V_0) \rho(r) / \rho_0$$

 $V_0 = \Delta m(\rho_0) \quad W_0 = -\Gamma(\rho_0)/2$ 



[1] M. Nanova et. al., PLB 727, 417 (2013) [2] M. Nanova et al., PRC 94 025205 (2016) [3] M. Nanova et al., PLB 710, 600 (2012) [4] S. Friedrich et al., EPJ A 52, 297 (2016) [5] E. Czerwiński et al., PRL 113, 062004 (2014)

#### Elastic arm algorithm<sup>[1]</sup>

#### Function to be minimized

In order to search for the circle with excluding outlier hits, we consider to minimize the following function:

$$E(\boldsymbol{w};\boldsymbol{\theta}) = \sum_{i=1}^{N} \left( w_i \frac{d_i(x_i;\boldsymbol{\theta})}{\lambda_i} + (1 - w_i) \right) + V(\boldsymbol{\theta})$$

- $w_i = 0$  or 1 for i = 1, 2, ... N.
- $\lambda_i$  ... threshold to judge the wire is signal or outlier.
- θ ... fitting parameters
- V(θ) ... constraint on θ. In the present analysis, constraint to make the circle pass through PSB.

#### Minimization of $E(w;\theta)$

We do not minimize  $E(w;\theta)$  directly, but instead we minimize Helmholtz free energy  $F(\theta)$  as decreasing the temperature T.

Partition function: 
$$Z = \sum_{w} \exp(-\beta E(w; \theta)) = e^{-\beta V(\theta)} \prod_{i=1}^{N} \left(e^{-\beta \frac{d_i}{\lambda_i}} + 1\right)$$
  
Free energy:  $F(\theta) = -\frac{1}{\beta} \log Z = -\frac{1}{\beta} \sum_{i=1}^{N} \log \left(1 + e^{-\beta (\frac{d_i}{\lambda_i} - 1)}\right) + V(\theta)$ 



wires

In the present case,  $f(x,y;a,b) = (x-a)^2+(y-b)^2-a^2-b^2$ 



#### Reference:

[1] R. Frtihwirth, A. Strandlie, Computer Physics Communications 120 (1999) 197-214, <a href="https://www.sciencedirect.com/science/article/pii/S0010465599002313">https://www.sciencedirect.com/science/article/pii/S0010465599002313</a>
[2] N. Ueda, R. Nakano, "Deterministic Annealing -Another Type of Annealing-", (7/7/1997), <a href="https://www.jstage.jst.go.jp/article/jjsai/12/5/12\_689/\_pdf">https://www.sciencedirect.com/science/article/pii/S0010465599002313</a>
[2] N. Ueda, R. Nakano, "Deterministic Annealing -Another Type of Annealing-", (7/7/1997), <a href="https://www.jstage.jst.go.jp/article/jjsai/12/5/12\_689/\_pdf">https://www.jstage.jst.go.jp/article/jjsai/12/5/12\_689/\_pdf</a>