Search for η^{\prime} - mesic nuclei with the WASA detector at GSI-FRS

Quark
q $\bar{q} \quad M_{q} \sim 3-100 \mathrm{MeV}$

Meson
(q) $\bar{q} \quad \mathrm{M}_{\mathrm{m}} \sim 100-1000 \mathrm{MeV}$

Dynamical mass generation by symmetry breaking in QCD

ChS Manifest	ChS Broken Dynamically	ChS Broken Explicitly
$\langle\bar{q} q\rangle=0$	$\langle\bar{q} q\rangle \neq 0$	$\langle\bar{q} q\rangle \neq 0$
$\mathrm{m}_{\mathrm{q}}=\mathrm{m}_{\mathrm{s}}=0$	$\mathrm{m}_{\mathrm{q}}=\mathrm{m}_{\mathrm{s}}=0$	$\mathrm{m}_{\mathrm{q}} \neq \mathrm{m}_{\mathrm{s}} \neq 0$

Mass

η^{\prime}-meson in vacuum

- $\mathrm{M}_{\mathrm{n}^{\prime}}=958 \mathrm{MeV} / \mathrm{c}^{2}$ (especially large) due to
- Chiral symmetry breaking.
- $\mathrm{U}_{\mathrm{A}}(1)$ anomaly.

η^{\prime}-meson in nuclei

- Partial restoration of chiral symmetry.
- Reduction of M_{n} is predicted.

η^{\prime}-meson in vacuum
- $\mathrm{M}_{\mathrm{n}^{\prime}}=958 \mathrm{MeV} / \mathrm{c}^{2}$ (especially large) due to
- Chiral symmetry breaking.
- $U_{A}(1)$ anomaly.
η^{\prime}-meson in nuclei

- Partial restoration of chiral symmetry.
- Reduction of M_{n} is predicted.
\rightarrow Attractive potential : $V_{n^{\prime} A}(r)=\Delta M_{n^{\prime}}\left(\rho_{0}\right)\left(\rho(r) / \rho_{0}\right)$
\rightarrow Bound states are expected (η^{\prime}-mesic nuclei)
\rightarrow Study of in-medium properties

Major decay modes

- $\eta^{\prime} N \rightarrow \eta N$
- $\eta^{\prime} N \rightarrow \pi N$
- $\eta^{\prime} N N \rightarrow N N$
H. Nagahiro, Nucl. Phys. A 914, 360 (2013).
- Coincident measurement of (P) and (d)
- Detect (P) backward
- Expected ~100 times better S/B.

Y. K. Tanaka et al., Phys. Rev. C 97, 015202 (2018)

- Coincident measurement of
(P) and (d)
- Detect (P) backward
- Expected ~100 times better S/B.

N. Ikeno et al., arXiv:2406.06058

- Coincident measurement of
(P) and (d)
- Detect (P) backward
- Expected ~100 times better S/B.

Experimental setup for n^{\prime}-mesic nuclei spectroscopy in 2022

particle measurement

- Superconducting Solenoid Magnet.
\Rightarrow 1T Magnetic Field.
- Mini-Drift Chamber (MDC).
- Charged particle tracking.
- Plastic Scintillators (PSB/PSBE/PSFE). - Timing \& $\Delta \mathrm{E}$ Measurement.
- Csl Electromagnetic Calorimeter.
- Charged particle \& y Energy.

Beam-time in 2022 Feb

- 3.5 days data accumulation
- ~ $1.1 \times 10^{7} \mathrm{~d}$ is registered

TOF-based Deuteron Trigger

PID by TOF SC4143

Evaluated excitation-energy from d momentum.

Only for on-site audiences

Consistent result with the previous experiment in 2014.

- PSB analysis for $\Delta \mathrm{E}$ and hit timing.
- 2.5 GHz waveform data analysis.
- Software QDC and CFD analysis.

Newly Developed PSB
(R.Sekiya et.al., NIM A 1034 (2022) 166745)

- PSB analysis for $\Delta \mathrm{E}$ and hit timing.
- 2.5 GHz waveform data analysis.
- Software QDC and CFD analysis.

WASA detectors analysis (MDC)

- MDC Tracking for momentum measurement.
- Track Finding in X-Y plane with Elastic Arm Algorithm.
- Hit wires selection with given PSB hits.
- Tracking with Kalman Filter.
- σ (residual) ~ 200 [um]

Carbon target ($4 \mathrm{~g} / \mathrm{cm}^{2}$)

- MDC Tracking for momentum measurement.
- Track Finding in X-Y plane with Elastic Arm Algorithm.
- Hit wires selection with given PSB hits.
- Tracking with Kalman Filter.
- σ (residual) ~ 200 [um]

TOF(WASA) $=\mathrm{T}_{\text {PSB }}-\mathrm{T}_{\text {target }}($ START $)$

$$
\beta(\text { WASA })=\frac{\text { (Track Length) }}{\text { cTOF(WASA) }}
$$

- Particle identification with the WASA is nicely achieved.
- Evaluation of $(\beta, P, \Delta E)$ resolution are ongoing for reasonable p selection.
- Averaged momentum from $(\beta, P, \Delta E)$ will give much better $p-\pi$ separation at $\mathrm{P} \sim 1 \mathrm{GeV} / \mathrm{c}$.
- We performed missing-mass spectroscopy in ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{dp})$ reaction to search for η^{\prime}-mesic nuclei at the FRS in GSI in 2022.
- d momentum measurement with the FRS.
- p selection with the WASA detector.
- 3.5 days physics run and 1.1×10^{7} d events are accumulated.
- The forward d identification and evaluation of excitation energy have been done.
- The inclusive spectra is consistent with the previous experiment in 2014.
- PID in the WASA detector is nicely working with measured $\mathrm{P}, \Delta \mathrm{E}$ and β.
- Evaluation of $(P, \Delta E, \beta)$ resolution is ongoing for reasonable p selection.
- Averaged momentum with $(P, \Delta E, \beta)$ will give better $p-\pi$ separation in our region of interest ($\mathrm{P} \sim 1 \mathrm{GeV} / \mathrm{c}$).
- Discussion on the semi-exclusive spectrum and physics interpretation in our collaboration group.
- Final semi-exclusive spectrum will be coming soon.

Backup

Theoretical spectra with Green's function methods

FIG. 8. Calculated spectra of the ${ }^{12} \mathrm{C}(p, d)^{11} \mathrm{C} \otimes \eta^{\prime}$ reaction for the formation of η^{\prime}-nucleus systems with proton kinetic energy $T_{p}=2.5 \mathrm{GeV}$ and deuteron angle $\theta_{d}=0^{\circ}$ as functions of the excited energy $E_{\text {ex }} . E_{0}$ is the η^{\prime} production threshold. Various combinations of the potential strength are considered within the range of $V_{0}=-50-200 \mathrm{MeV}$ and $W_{0}=-5-20 \mathrm{MeV}$ as indicated in the figure. The thick solid lines show the total spectra and dashed lines indicate subcomponents. The neutron-hole states are indicated as $\left(n \ell_{j}\right)_{n}^{-1}$ and the η^{\prime} states as $\ell_{\eta^{\prime}}$.
H. Nagahiro et al., PRC 87, 045201 (2013)

FRS optics calibaration

- FRS optics analysis
- Elastic d(p,d)p reaction with different FRS scaling factors.

FRS optics calibaration

- FRS optics analysis
- Elastic d(p,d)p reaction with different FRS scaling factors.

FRS optics calibaration

- FRS optics analysis
- Elastic d(p,d)p reaction with different FRS scaling factors.

FRS optics calibaration

- FRS optics analysis
- Elastic d(p,d)p reaction with different FRS scaling factors.

FRS optics calibaration

- FRS optics analysis
- Elastic d(p,d)p reaction with different FRS scaling factors.

n^{\prime} - nucleus optical potential

Experimental values

CBELSA / TAPS
$\mathrm{V}_{0}=-39 \pm 7_{\text {stat }} \pm 15_{\text {syst }} \mathrm{MeV}^{[1,2]}$ $\mathrm{W}_{0}=-13 \pm 3_{\text {stat }} \pm 3_{\text {syst }} \mathrm{MeV}{ }^{[3,4]}$
η^{\prime}-nucleus optical potential

$$
\begin{gathered}
V_{\eta^{\prime}}(r)=\left(V_{0}+i W_{0}\right) \rho(r) / \rho_{0} \\
V_{0}=\Delta m\left(\rho_{0}\right) \quad W_{0}=-\Gamma\left(\rho_{0}\right) / 2
\end{gathered}
$$

$\operatorname{Re}\left(a_{n^{\prime}}\right)=0 \pm 0.43 \mathrm{fm}$ $\operatorname{lm}\left(\mathrm{an}_{n^{\prime}}\right)=0.37 \mathrm{fm}$

$$
\left|V_{0}\right|<38 \mathrm{MeV}
$$

$$
\mathrm{W}_{0}=-\left(33_{-14}^{+40}\right) \mathrm{MeV}
$$

[1] M. Nanova et. al., PLB 727, 417 (2013)
[2] M. Nanova et al., PRC 94025205 (2016)
[3] M. Nanova et al., PLB 710, 600 (2012)
[4] S. Friedrich et al., EPJ A 52, 297 (2016)
[5] E. Czerwiński et al., PRL 113, 062004 (2014)

Function to be minimized

In order to search for the circle with excluding outlier hits, we consider to minimize the following function:

$$
E(\boldsymbol{w} ; \boldsymbol{\theta})=\sum_{i=1}^{N}\left(w_{i} \frac{d_{i}\left(x_{i} ; \boldsymbol{\theta}\right)}{\lambda_{i}}+\left(1-w_{i}\right)\right)+V(\boldsymbol{\theta})
$$

- $w_{i}=0$ or 1 for $i=1,2, \ldots N$.
- $\lambda_{i} \ldots$ threshold to judge the wire is signal or outlier.
- $\boldsymbol{\theta}$... fitting parameters
- $V(\boldsymbol{\theta}) \ldots$ constraint on $\boldsymbol{\theta}$. In the present analysis, constraint to make the circle pass through PSB.

Minimization of $E(w ; \theta)$

We do not minimize $E(w ; \theta)$ directly, but instead we minimize Helmholtz free energy $F(\theta)$ as decreasing the temperature T.

$$
\text { Partition function: } Z=\sum_{w} \exp (-\beta E(w ; \theta))=e^{-\beta V(\theta)} \prod_{i=1}^{N}\left(e^{-\beta \frac{d_{i}}{\lambda_{i}}}+1\right)
$$

Free energy: $F(\boldsymbol{\theta})=-\frac{1}{\beta} \log Z=-\frac{1}{\beta} \sum_{i=1}^{N} \log \left(1+e^{-\beta\left(\frac{d_{i}}{\lambda_{i}}-1\right)}\right)+V(\boldsymbol{\theta})$

In the present case, $f(x, y ; a, b)=(x-a)^{2}+(y-b)^{2}-a^{2}-b^{2}$

DA

Fig. 1 in ref. [2]

