Theoretical study of the ΣN cusp in the $K^-d \rightarrow \pi \Lambda N$ reaction

Shunsuke Yasunaga

Tokyo Institute of Technology, Japan

10th International Conference on Quarks and Nuclear Physics (QNP2024) Universitat de Barcelona, July 8-12, 2024

1

Table of contents

- Introduction
- Methods
- Numerical results
- Summary

$K^-d \rightarrow \pi \Lambda N$ reaction

Final state interaction of $YN \rightarrow YN$

- Hyperon-nucleon interaction is an attractive subject. There are applications to hyper-nucleus structure and neutron stars.
- It is difficult to conduct experiments on low energy two body scatterings of *YN*.
- An alternative approach is analyzing two body interaction of hyperon-nucleon through final state interaction.

ΣN cusp structure

- Threshold cusp is general feature in spectra representing the sharp peak at thresholds.
- Two factors on the ΣN threshold:
 - 1. ΣN is coupled to lower channel ΛN
 - 2. Intermediate Σ (imaginary part of Green's function)
 - Is cusp structure (sharpness) really observed ?
 - Can we obtain the amplitude of $\Sigma N \rightarrow \Lambda N$?

1] O. Braun, et al, Nuclear Physics B 124, 45 (1977).

ΣN cusp structure

- Ongoing experiment J-PARC E90^[2]: incident kaon momentum 1.4 GeV/c expected resolution $\Delta M_{\Lambda p} = 0.4$ MeV
- This study is focused on the theoretical analysis of the ΛN invariant mass spectrum near the ΣN threshold.

[1] O. Braun, et al, Nuclear Physics B 124, 45 (1977). [2]Y. Ichikawa et al. (J-PARC E90 Collaboration), EPJ Web Conf. 271, 02012 (2022).

Table of contents

- Introduction
- Methods
- Numerical results
- Summary

Scattering process (Foreground)

 Σ exchange diagram for the $K^-d \rightarrow \pi^-\Lambda p$ reaction

Scattering processes (Backgrounds)

Background diagrams for the $K^-d \rightarrow \pi^-\Lambda p$ reaction

Background reduction

- In our previous study^[3], we examined kinematic conditions to reduce the backgrounds.
- Two Kinematic conditions to reduce the backgrounds:
 - 1. Pions going forward: $\cos \theta_{\pi} \sim 1$
 - \Rightarrow suppression of meson exchange
 - (& dominance of spin triplet interaction between baryons)
 - 2. Nucleons having higher momenta: $p_N \sim 100 \text{ MeV}$
 - \Rightarrow suppression of impulse process

[3] S.Y. and D. Jido, T. Ishikawa, (2024), arxiv:2405.15534 [nucl-th]

Same conditions as today's talk

Our previous study on ΛN interaction

- There are some experimental data of the scattering length $a_{\Lambda p}$. However, $a_{\Lambda n}$ is not measured due to the experimental difficulties. Thus, its isospin symmetry breaking $(a_{\Lambda n} / a_{\Lambda p})$ is unknown.
- We calculated ΛN invariant mass spectra for the $K^-d \rightarrow \pi^0 \Lambda n$, $\pi^- \Lambda p$ and concluded that ratios of them can be extracted from that of the spectra^[3].

$$\left(\frac{a_{\Lambda p}^{\text{spin}=1}}{a_{\Lambda n}} \approx 2 \frac{d\sigma(\pi^{0}\Lambda n)}{dM_{\Lambda n}} \right) \frac{d\sigma(\pi^{-}\Lambda p)}{dM_{\Lambda p}}$$

Inumerically

[3] S.Y. and D. Jido, T. Ishikawa, (2024), arxiv:2405.15534 [nucl-th]

Meson-Baryon amplitude: *T_{MB}*

- Partial wave expansion (s-wave + p-wave)
- $\overline{K}N$ amplitudes $(\overline{K}N \to \overline{K}N, \pi Y)$:

Chiral unitary approach^[4] (amplitude for each channel)

• πN amplitudes: experimental data^[5]

[4] D. Jido, E. Oset, A. Ramos, Phys. Rev. C 66, 055203 (2002) [5] R. L. Workman, R. A. Arndt, W. J. Briscoe, M. W. Paris, and I. I. Strakovsky, Phys. Rev. C 86, 035202 (2012)

Propagator of Σ

• There is a propagator from intermediate Σ , and its off-shellness is linked to that of deuteron. Using the deuteron wave function^[6] φ , their convolutive amplitude T_G is denoted as

$$T_G = \int \frac{d^3 \vec{q}}{(2\pi)^3} \varphi(|\vec{q} + \vec{p}_{\pi^-} - \vec{p}_{K^-}|) \frac{1}{q_0^2 - |\vec{q}|^2 - M_{\Sigma}^2 + i\epsilon} \,.$$

• Imaginary part of the propagator is on-shell distribution denoted by delta function. Therefore, $Im(T_G)$ shows the threshold.

[6] R. Machleidt, Phys. Rev. C 63, 024001 (2001).

$\Sigma N \rightarrow \Lambda N$ conversion amplitude

• By Lippmann-Schwinger equation near the mass threshold of ΣN $(M_{\Lambda N} \sim M_{\Sigma} + M_N)$, conversion amplitude $T_{\Sigma N \to \Lambda N}$ is obtained as offdiagonal part of 2-channel *T*-matrix

$$T = \begin{pmatrix} T_{\Lambda N \to \Lambda N} & T_{\Lambda N \to \Sigma N} \\ T_{\Sigma N \to \Lambda N} & T_{\Sigma N \to \Sigma N} \end{pmatrix}$$

• We use scattering lengths $a_{\Lambda N}$ (empirical) and $a_{\Sigma N}$ (theoretical models) as parameters of *T*.

Table of contents

- Introduction
- Methods
- Numerical results^[7]
- Summary

[7] S.Y. and D. Jido, in preparation

Amplitude from propagator

Amplitude of $\Sigma N \rightarrow \Lambda N$

• Spin-triplet scattering length $a_{\Lambda N}^{\text{spin}=1} = -1.56^{+0.19}_{-0.22}$ [fm]^[8], and two parameters

[8] A. Budzanowski *et al.* (HIRES Collaboration), Phys. Lett. B 687, 31 (2010)
[9] T. A. Rijken, V. G. J. Stoks, and Y. Yamamoto, Phys. Rev. C 59, 21 (1999).
[10] J. Haidenbauer and U.-G. Meißner, Phys. Rev. C 72, 044005 (2005)

ΣN cusp with two parameters

- ΛN invariant mass spectra for the $K^-d \rightarrow \pi^-\Lambda p$ reaction (only with foreground process)
- Incident kaon: 1000 MeV/c
- The spectrum shape at ΣN threshold (narrow or wide peak) varies depending on the parameter $a_{\Sigma N}$

Comparison with experiment

[1] O. Braun, et al, Nuclear Physics B 124, 45 (1977).

Table of contents

- Introduction
- Methods
- Numerical results
- Summary

Summary

- The cusp (sharp peak) structure at ΣN threshold in the ΛN invariant mass spectrum for $K^-d \rightarrow \pi \Lambda N$ is numerically observed.
- There is mainly two factors that causes threshold peak:
 ① propagator with deuteron wave function
 ② two body amplitude of the final state interaction
- The shape of the spectrum varies depending on the value of $a_{\Sigma N}^{\text{spin}=1}$. \Rightarrow possibility of detecting the amplitude of $\Sigma N \rightarrow \Lambda N$

Additional slides

Detail of $\Sigma N \rightarrow \Lambda N$ **conversion amplitude** (1)

• Treat ΛN and ΣN as doublet states

$$T = \begin{pmatrix} T_{\Lambda N \to \Lambda N} & T_{\Lambda N \to \Sigma N} \\ T_{\Sigma N \to \Lambda N} & T_{\Sigma N \to \Sigma N} \end{pmatrix}$$

• Amplitude *F* is constructed by the unitarity with kernel *V*

$$F = (-V^{-1} - iP)^{-1}$$

$$P = \begin{pmatrix} p_{\Lambda}^* & 0 \\ 0 & p_{\Sigma}^* \end{pmatrix}$$

$$p_{\Lambda}^* \text{ and } p_{\Sigma}^* : \text{ momenta of } \Lambda \text{ and } \Sigma \text{ in the } YN \text{ rest } frame$$

Detail of $\Sigma N \rightarrow \Lambda N$ **conversion amplitude (2)**

• We assume kernel V is constant and symmetric, and satisfy the condition at thresholds of ΛN and ΣN

 $T_{11}(W = M_{\Lambda} + M_N) = a_{\Lambda N}$ $T_{22}(W = M_{\Sigma} + M_N) = a_{\Sigma N}$

• *V* is determined by 3 parameters, $a_{\Lambda N}$, $\operatorname{Re}(a_{\Sigma N})$, and $\operatorname{Im}(a_{\Sigma N})$ (3 conditions for 3 components of *V*, V_{11} , $V_{12} = V_{21}$, and V_{22})