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Next-Generation yEFT Interactions

We are interested in calibrating the next generation of EF T nucleon-
nucleon interactions.

These models should have robust uncertainty quantification:
» Parametric uncertainty
* Truncation uncertainty

Incorporating these uncertainties into our model calibration we aim
to better understand and predict nuclear phenomena based on
microscopic interactions of nucleons.



Effective Field Theory

We take an effective expansion of QCD o et 3N Force

preserving chiral symmetry with N and x 0 W
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Bayes’ Theorem

For a model calibration problem in a Bayesian approach, we have
pr(a|y,l) o pr(y|a) pr(a|I)

Posterior Likeﬁhood \ Pr;or
The likelihood can be formulated as it is in standard model fitting for uncorrelated
data

2
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What the prior does for us is encode any previous information that we may know.

. Ex: LECs are natural, i.e., order1 — pr(a|l) ~ A (6, Zpr)



Likelthood Improvement

In the simple likelihood, we had the y?, (e_)(z/z), but we can improve this.

We can inform the model calibration with information about the model itself.

In what way? If we assume that the exp and th errors are normally
distributed:
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Modeling the Model

Since our model is a perturbative series, we can write an observable as such
(BUQEYE framework)*:

O max|p; g, P
() = ) X Q"W). Q= ——"—
0 b

where y_.A(x) sets a reference scale for the observable y,,, A, is the EFT
breakdown scale, and ¢, are the natural coefficients.

This series follows the truncation scheme of the EFT:

Vin(X) = Yiet(®) 2 CA(X)Q™(X) + Yief(¥) Z c,()Q"(x) = yP(x) + 8yP().

n=k+1

*R. J. Furnstahl et. al. Phys. Rev. C 92, 024005



Truncation Errors

From the neglected terms, we have

By (X)) = Yref(X) Z C,(x)Q"(x).

n=k+1
Under the assumption that the truncation error is uncorrelated across

orders, this is a geometric series in (), so we can find*

I =0

Where we assume thatc,|c ~ A (0,52).

*J. A. Melendez et. al. Phys. Rev. C 100, 044001



Theoretical Covariance

From the truncation uncertainty, we can construct a covariance
matrix*, assuming oy;, is normally distributed,

-~ N (k+1 - N (k+1
(yref,ic Qi( T )) (yrefJC Q]( " )) -
M= r(x;, x;3 ),

if
1 - Q,0;
were we introduce a kernel r(x;, x;; [) to smooth and handle
correlations.

*S. Wesolowski et al. J. Phys. G 46, 045102



Correlated Likelithood

We can build a total covariance,
_ NeXp th
;= X005+ X
And our correlated likelihood Is now
- N 1 —1( = —
pr(s’] ‘ a” I) X e_ (Yexp o Yth) 2 <Yexp o Yth> — e—dM(Zi)

where we define the Mahalanobis distance

T
dM(Zi) — (iexp T yth) 2! (yexp - yth)'



Additional Parameters

In this process, we have introduced two new parameters: ¢ and A\,

This changes the posterior we need to find:
pr(a,c”, A, | Yexpr 1) & Pr(Yexp | @, Z, 1) pr(al I pr(c’| A, a, 1) pr(A,|a,]) .

_—

. Ty

Total posterior Likelihood for @ Prior for & Posterior for ¢*  Posterior for A,

We can find a closed form of pr(c” | Ay, a, I) and pr(A,, | a, I).

*J. A. Melendez et. al. Phys. Rev. C 100, 044001



Pionless EFT

2N Force

LO
We are working in an EFT framework without pions in (p/A,)°

Weinberg PC
NLO 1
Our interaction takes the form: (PI A’ I[*||
. """-T P
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¢ e

VNLO(k K) — Clkz + C2k261 o) + C3S12(k) + C4k27«'1 TH
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Regularization

To use these interactions, they must be regularized in some fashion and must
be local in coordinate space (for QMC).

We employ a Gaussian cutoff in coordinate space, which smears
o-functions upon Fourier transformation

400
We choose R, € [1.5,2.0,2.5] tm which are ~T ~ [270,200,160] MeV

\)
IN momentum space.



Parameter Estimation Algorithm

To estimate all of these parameters, we need data to calibrate to:

Our choice of data is the pp and np Granada database (differential
cross sections, total cross sections) up to 5 MeV + deuteron binding
energy + nn scattering length. Not phase shifts!

We then use Markov Chain Monte Carlo (MCMC) to sample the
posteriors at LO (QO), NLO (Qz), and N3LO (Q4), allowing for the

order-by-order convergence analysis for LO—NLO and NLO—N3LO
to estimate ¢ and A\,



NLO Posterior
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2.5 tm ¢ and A, Posteriors
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2.0 tm ¢ and A, Posteriors
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1.5 tm ¢ and A, Posteriors
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Extrapolation to Remove Artifacts

Uniform prior on slope angle

90- *— NLO Why Is there
--o—- N3LO

dependence on the
order?

* Power counting?

* Flawed assumption
of geometric series?
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Unconstrained p-waves

With A,~50 MeV, the max lab energy is given by

(max) El(a’ﬁaX)//t Az
Pc.m. _ -1 = El(an[/)laX) — b ~ 5 MeV

The Granada database has 4 data (polarized cross sections) up to 5
MeV that constrains ' P, and °P, channels.

Thus the pionless models are constrained predominantly in
s-waves, In agreement with expectations.



Posterior Predictive Density

We can now easily and rigorously propagate uncertainty to observable
calculations.

We calculate a posterior predictive distribution (p.p.d.) for the
observables

pr(yy, | v, X, 1) = [dc_i de* dNy, N (Y Zap) Pr(a, %, Ay | Yexps 1)

which is done via sampling the posterior.

This can be done for any calculation of nuclear observables.



Propagation of Errors for Deuteron
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~10° parallel sample steps at ~4 min. per step

Long-term Goals |
— 280 days of wall time on an HPC

» For pion- and A-full interactions, we must look at higher energy data (~200 MeV)
* Emulation for calculation of scattering observables

Ozge Surer Stefan Wild Matt Plumlee || Pablo Giuliani Daniel Odell
Miami Universit LBNL Amazon MSU/FRIB SRNL

Reduced Basis Methods via

Gaussian Process Emulation | o
Galerkin Projection



Open Questions

* Application to different power counting

» Application to few- and many-body observables
 How do we generate ppds using expensive many-body methods?
» Estimation of the momentum to treat model discrepancy?

* Model mixing EFT model
* Across degrees-of-freedom

» Cutoffs
* Regulators
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Posterior for ¢

Sincewe hadc,|c ~ N (0,52), where ¢” is a population variance, we make the
standard choice of prior for an unknown variance:

2 -2
C N)( (I/(), Tg)
This yields a conjugate posterior
C 1D~y (1) = pr(c’|d, Ay, D~y (v, 7°(@, Ay)
pr(c X “Wp, 7, pr(c-|a, /\, X “\v,Tt7(a, /\)) .

Where we have hyperparameters: -
V=1t N N, rders> degrees of freedom Cpi = Vi ~i
\ Yref,i an
_ 1 )
T2 (Cl, Ab) = — I/OTO + Z le%,i(a’ Ab) . scale

U

*J. A. Melendez et. al. Phys. Rev. C 100, 044001



Posterior for A,

Our posterior for the breakdown scale also uses these
hyperparameters:
pr(/A, [ 1)

Pi f
TVHn,i (A_b)
This posterior needs to be numerically normalized as the
normalization constant is dependent on a.

pr(A,|a, 1)

With all our components, we can estimate our parameters.



Prior Choices

, pr@|h ~ (5245‘1’, 102)

. pr(A, | D) ~ A (500 MeV,1000* MeV )

. pr(c*|D) ~ ¥y *(yy = 1.5,75 = 1.5%)
.1\ — olpi—pill2L, ,16—6;|121 _ (Y

o 1(x;, x5 1) = e PE e Otypestyper  bp = 0.3 MeV, [y =20

p,~ 45 MeV/c, for np and nn scattering
. Psoft =

1/161pp ~ 23 MeV, for pp scattering .



