

ITS3: the next upgrade of the ALICE Inner Tracking System

Paola La Rocca INFN and University Catania

on behalf of the ALICE Collaboration

The ALICE experiment

- Study of strongly interacting matter at extreme densities (QGP) in heavy ion collisions at the LHC (CERN)
- Very high multiplicities tracking of up to O(10k) particles in single event
- Reconstruction of charm and beauty hadrons
- Interest in low momentum (≲1 GeV/c) particle reconstruction

ALICE silicon tracker development timeline

ALICE silicon tracker development timeline

Upgrade motivations and requirements

ALICE 2 \rightarrow ALICE 2.1

- Impact parameter resolution reduced by a factor of ~2 in low p_{T} region
- Tracking efficiency up to more than 30% higher, in low p_{T} region

Most striking improvements in the study of:

- Low momentum charm and beauty hadrons
- Low-mass dielectrons
- Beauty baryons
- **Beauty-stange mesons**
- Charm strange and multi-strange baryons
- Light charm hypernuclei

Paola La Rocca (UniCT, INFN) - QNP 2024

How to improve ITS2

Non-sensitive material

ightarrow Silicon has 1/7 of total material budget

Non-uniformly distributed material

→ Stave overlapping, support and water-cooling structure

Unable to be closer to the interaction point

→ Mechanical constraints

Paola La Rocca (UniCT, INFN) - QNP 2024

How to improve ITS2

Non-sensitive material

TS2 Inner Barrel

ightarrow Silicon has 1/7 of total material budget

- mm 32 mm

40 mm

Non-uniformly distributed material

→ Stave overlapping, support and water-cooling structure

Unable to be closer to the interaction point

 \rightarrow Mechanical constraints

Removal of water cooling

Possible if power consumption stays below 40 mW/cm²

Removal of circuit boards (power and data)

Possible if integrated on Silicon sensors

Removal of mechanical structure Stability due to bent Silicon wafers

ITS3 - truly cylindrical wafer-scale MAPS

ITS3 Engineering Model 1

Benefits:

- Closer to interaction point
 - \rightarrow L0 radius from 24 mm to 19 mm
- Reduction of material budget per layer
 → from 0.36% X/X0 to 0.09% X/X0 (average)
- Homogeneous material distribution

LAYOUT:

Replacement of the ITS2 Inner Barrel with 3 layers of **bent wafer-scale sensor ASIC**

Technology:

- MAPS in 65 nm CMOS process
- 300 mm wafer-scale chips, fabricated using stitching
 → 3 layers with 6 sensors
- Thinned down to 50 µm
 - → Flexible (bent to target radii)
- Air cooling and ultra-light mechanical supports (carbon foam)

Paola La Rocca (UniCT, INFN) - QNP 2024

ITS3 sensor bending

ALPIDE CHIP BENDING

- Project target for thicknesses and bending radii are in a "not breaking" regime
- Full mock-up "µITS3": 6 ALPIDEs (180nm) bent to ITS3 target ٠
- No degradation of detection efficiency and spatial resolution observed
- Results validated on bent 65 nm pixel test structures

Inefficiency (number of non-associated tracks / total tracks) ניסיי ALICE ITS3 beam test preliminar R = 30 mm@DESY 5.4 GeV/c electron R = 24 mmPlotted on 29 Sept 2022 ALPIDE, $V_{bb} = 0$ V $R = 18 \, mm$ 99% efficient 99.9% efficient 99.99% efficient 100 200 300 400 500 Threshold (e⁻)

G. Aglieri Rinella et al Nuclear Inst. and Methods in Physics Research, A 1028 (2022) 166280

1000

50 µm (mN)

5

nomalised

Force

ITS3 target radii

Air cooling - Thermo-mechanical characterization

Tests in wind tunnel on breadboard model:

- Si and polyimide sandwich with copper serpentines embedded
- exemplary power consumption: 1000 mW /cm² in end-caps, 25 mW /cm² in matrix
- $\Delta T < 5^{\circ}C$ and vibrations within ± 0.5 µm with 8 m/s airflow

MLR1: 65 nm technology qualification

Main goals:

- Learn technology features
- Characterize charge collection
- Validate radiation hardness

MLR1 contains many test chips (transistor test structures, DACs, analog pixel matrices, digital pixel matrices, ...)

Analogue Pixel Test Structure

- 4x4 px matrix with direct analog readout
- OpAmp buffer for enhanced time resolution
- SF buffer for stable readout

DPTS Digital Pixel Test Structure

 32x32 px matrix with digital asynchronous readout

CE65 Circuit Exploratoire 65 nm

 64x32 px matrix with rolling shutter analog readout

Process modification

- Standard: ALPIDE-like
- No fully depleted → signal charge outside the depleted area collected primarily by diffusion
- Tolerance to NIEL exceeding 10¹³ 1 MeV neq/cm²

- Most promising variant
- Gap in the deep n-implant to increase the lateral electric field at the pixel borders
- Higher detection efficiency and improved timing performance at the corners

Radiation hardness

Detection efficiency and fake-hit rate Vs threshold and irradiation levels, as measured on 15 µm pitch DPTS:

- ightarrow Increased noise due to ionizing irradiation
- → Decreased CCE due to NIEL

 \rightarrow Efficiency > 99% and FHR < 2 x10⁻³ pix⁻¹s⁻¹ after irradiation at ITS3 requirements

Spatial resolution

Spatial resolution and average cluster size Vs threshold and irradiation levels, as measured in testbeams on 15 μ m pitch DPTS:

- → The spatial resolution measured slightly better than pixel pitch / V12 (no degradation with received dose)
- → Slight systematic decrease of average cluster size with the increasing non-ionising radiation dose

Stitched MAPS in Engineering Run 1 (ER1, 65 nm)

MOSS - MOnolithic Stitched Sensor (14 x 259 mm²)

- 6.72 Mpixel, different pitches (18 and 22.5 µm)
- Conservative design

MOST - Timing (2.5 x 259 mm²)

- 0.9 Mpixel , 18 µm pixels
- More dense design

Goals:

- Show feasibility of stitching process
- Understand stitching 'rules', redundancy, fault tolerance

MOSS

- 10 Repeated Sensor Units (RSU) & 2 end-caps regions (powering and readout)
- 2 independent Half Units (HU) per RSU
 - Top HU: 4 matrices of 256 x 256 22.5 µm pixels
 - Bottom HU: 4 matrices of 320 x 320 18 µm pixels
- Readout either through left endcap or for every half RSU • separately

MOSS first testing results

- Chip is operational
- Efficiency and spatial resolutions that are expected from MLR1 chips are confirmed
- Yield: currently under study with extensive characterization campaign with wafer prober. Target < 2% dead pixels per layer

Future ITS3 milestones

• ER2 - full size prototype sensor

Design according to final ITS3 specifications and finalised incorporating learnings from MLR1 and MOSS testing

- Modular design: each sensor is divided into 3, 4, or 5 segments with 12 RSUs
- Powering and readout only from end-caps
- End-caps acting as a separate readout circuit on the same silicon wafer
- Submission to the foundry in fall 2024
- ER3 final sensor production
- Optimization of assembly sequence and detector integration → qualification model (QM) half barrels
- Final assembly and commissioning

Summary

Major milestones achieved:

- Bending , interconnection , air cooling , assembly verified
- Bent MAPS performance demonstrated in beam
- 65nm process qualified (MLR1)
- Stitching successfully demonstrated in MOSS, testing ongoing

Thank you!

• TDR reviewed by LHCC and approved by Research Board

ALICE ITS3 is on track for installation in LS3 in 2026-2028!

Backup slides

- MAPS of ~50 µm thickness are quite flexible
- The bending force scales with thickness to the third power → large benefit from going even a bit thinner
- The breaking point moves to smaller bending radii when going thinner

Beam test campaigns on bent ALPIDEs:

1. First bent chip (DESY, Jun 2020)

2. Bent chip on cylinder (DESY, Aug/Dec 2020)

4. μ ITS3 with 6 ALPIDE + target

(SPS, Jul 2021)

3. Bent chips at all radii, carbon foam (DESY, Apr 2021)

5. Carbon foam (DESY, Sep 2021)

fued part

1023, 511)

Column

DESY, June 2020

Laboratory and test beam measurements

- Chip performance doesn't change after bending
- Efficiency above 99.9% at a threshold of 100 e-(normal operating point), consistent with flat ALPIDE

- No effects on bending radius observed
- Spatial resolution (~5 µm) and efficiency (> 99.99%) consistent with flat ALPIDE
- Results also match results where the chip was bent along the other direction

DESY, Apr 2021

Measurement of Lamba-c (Λ_c)

In heavy-ion collisions the production of charm and beauty baryons is expected to be significantly enhanced:

- recombination with light-flavour quarks present inside QGP
- hadron-mass-dependent radial collective flow

However current results have limited statistical precision!

The measurement requires very precise tracking and impact parameter resolution

Paola La Rocca (UniCT, INFN) - QNP 2024

Measurement of Lamba-c (Λ_c)

Large improvement (wrt to ITS2) of significance (factor 4) and S/B ratio (10), thanks to:

- better pointing resolutions \rightarrow larger rejection of the combinatorial background
- larger efficiency for the signal selection

Bending Large Scale

Bending of a wafer scale sensor (50 µm thick, innermost ITS3 layer size)

Air cooling

CARBON FOAM SUPPORT STRUCTURE

- Different foams were characterized for machinability and thermal properties
- Baseline is ERG DUOCEL_AR, which also features the largest radiation length

COOLING STUDIES: wind tunnel

- Tests with model and heaters
- Different power & air speed (between 2 and 8 m/s)
- Thermal and mechanical properties are studied on estimated power consumption
- Carbon foam radiator are key for heat removal at periphery
- Air cooling is feasible with margin

Matrix
Matrix: 10-20 mW/cm²

Periphery

Tmatrix

Tperiphery

Gas cooling

ALICE

ITS3 Layout

ITS3 Layout

ITS3 assembly tests

FPC and Sensor on jig

First layer assembled

Wire bondings

ITS3 Performance from simulations

Large improvement for low transverse momenta

Chip development roadmap

Radiation hardness

Seed pixel signal response to $^{55}\mbox{Fe}$ Vs irradiation levels, as measured on 15 μm pitch APTS:

→ Energy resolution degrades with the increasing non-ionising radiation dose

MLR1 - Radiation hardness

MLR1 characterization - pixel pitch

The detection efficiency increases with increasing pixel pitch

- Relative fraction of pixel border area decreasing with the increasing pixel pitch
- Pixel border only being less efficient due to geometrical sharing of the charge among neighbouring pixels

MLR1 characterization - pixel pitch

Spatial resolution and average cluster size VS threshold and pixel pitch, measured with APTS

- More charge sharing ⇒ improved resolution
- Considering the ITS3 target pitch size of 20.8 μm × 22.8 μm, the expected spatial resolution is about 5 μm for a threshold of 100 e⁻
- For the ITS3 it is expected to have on average less than 1.5 pixels above threshold for a minimum ionising particle hit

Power consumption

DPTS front end designed to investigate power consumption (ITS3 target < 40 mW/cm²) :

- At least a main current I_{bias} of 30 nA is needed
- 16 mW/cm² as measured on 15 μ m pixel
- 7.6 mW/cm² if projected to the final ITS3 sensor pixel pitch

MOSS tests

MOSS chip from first production **97%** (97/100 chips) "OK"

Yield:

- ≤ 2% missing pixels due to production yield
- 2/3 wafers comply
- 1440 regions (tiles)/sensor --> can be remotely switched off in case of production failure

Full ITS3 sensor production

18 wafers from ER1 yield
extrapolation plan to produce 50 wafers

Paola La Rocca (UniCT, INFN) - QNP 2024

ALICE

MOSS tests - spatial resolution

- Power is distributed globally yield is addressed by a highly granular set of switches that allow to turn off faulty parts locally
- Readout is purely asynchronous and hit-driven low power consumption + timing information

MOST - First communication tests

Serial transmission of hit data at bit rates of 1 Gbit s⁻¹ over 26 cm-long columns

 \rightarrow all 24 columns worked for the sensor tested, demonstrating robust cross-stitch signalling

