

DOE's Engine of Discovery

µRWELL detector developments at Jefferson Lab for high luminosity experiments

Rafayel Paremuzyan Jefferson Lab

QNP2024 - The 10th International Conference on Quarks and Nuclear Physics

Jul 8 – 12, 2024 Facultat de Biologia, Universitat de Barcelona

Jefferson Lab in Newport News, Virginia

Continuous Electron Beam Accelerator Facility aka CEBAF

- Running track Shape accelerator
 - Two linear accelerators
 - Two recirculating arcs.
- Simultaneous beam delivery to 4 halls
- High longitudinal polarization (> 85%)
- 100% Duty factor, Continuous Wave beam
- Can reach up to 11 GeV (Halls, A, B and C) and 12 GeV (Hall D)
- Beam power: 1 MW (e.g. 10 GeV @ 100 μA)

JLab experimental program

ELSEVIER

Progress in Particle and Nuclear Physics Volume 127, November 2022, 103985

Broad physics programs

- Electromagnetic Form Factors and Parton Distributions
- Nuclear Femtography (Nucleon 3D structure)
- Hadron Spectroscopy
- QCD and Nuclei
- Test of Standard Model and Beyond

Review

Physics with CEBAF at 12 GeV and future opportunities <u>https://arxiv.org/abs/2112.00060</u>

Potential upgrades

- Energy upgrade of the CEBAF : ~ 22 GeV
- Positron beam
- <u>Need for high Luminosity facilities: High luminosity large</u> <u>acceptance detectors: CLAS12 (Hall-B) and SOLID (Hall-</u>

Generalized Parton Distributions

One of flagship experiments at JLab are deep exclusive processes (e.g. DVCS, TCS, DVMP etc), allowing to access Generalized Parton Distributions (GPDs).

Hard exclusive reactions experimentally studied at JLab

- GPDs are hybrid functions that combine aspects of PDFs and Elastic Form Factors.
- 2D spatial + 1D momentum distributions of partons inside the nucleon
- More than a dozen of completed and planned dedicated experiments at JLab.

Challenges in the extraction of GPDs

GPDs depend on three variables: x, ξ and t, however they enter into observables as an integral over the quark internal loop momentum x, or they can be accessed through the beam spin asymmetries at x = $\pm \xi$ line.

The reaction, Double DVCS has highly virtual incoming and outgoing photons.

By varying Q'^2/Q^2 ratio one can get deeper inside "x vs ξ " phase space.

- The drawback is DDVCS cross-section is 2-3 orders of magnitude smaller than the DVCS or TCS cross-section.
 - No measurements so far because of the low cross-section
- Two JLab LOIs LOI12-16-004 and LOI12-15-005 intend to do measurements DDVCS measurements in Hall-B and Hall-A with modest modification of the CLAS12 and SOLID experimental setups.
- Need at least: L > 10³⁷cm⁻²s⁻¹ in order to accumulate enough statistics in a reasonable timeframe (1-2 years)
- Requires large area trackers with good spatial resolutions at particle rates of ~few MHz/cm²

Micro Resistive Well (μ RWELL) detectors

A promising solutions is to use Micro-resistive well (µRWELL) detectors

- Amplification occurs inside wells
- The whole amplification charge is collected on the Resistive layer, which is capacitively coupled to readout strips/pads
- Robust against discharges
- Good position resolution
- Low material budget:
- Relatively easy construction
- Lower production cost
- The gain is higher than gain of a single stage GEM

G. Bencivenni et al 2015 JINST 10 P02008

With this initial design, above 100 KHz/cm², the gain starts to drop.

This is mainly due to the resistive layer: the charge doesn't get dissipated fast enough.

High-Rate (HR) version µRWELLs

The Patterning – Etching – Plating (PEP) Groove

PEP Dot

Figures from G. Bencivenni's slide.

- DLC is grounded from top by kapton etching and plating.
- Results to ≈1 mm dead zone around the groove.

- Similarly to groves, the DLC is grounded through PEP dots
- Much smaller geometric dead-zone.

Recent developments @ JLab

A big (1.5 m x 0.5 m) test prototype is being tested for the CLAS12 Luminosity upgrade: 4 small (10cm x 10cm) + 1 (30 cm x 30 cm) prototypes with different options of HR uRwell detectors to be tested soon (thanks to recent Laboratory Directed Research and Development (LDRD) funding)

Four $\mu RWELL$ detector to be tested soon

Testing of small detectors

- Four 10 cm x 10 cm detectors will arrive to JLab with next 1-2 weeks
 - In the process of being shipped
- The test stand includes:
 - 2 scintillator bars for trigger
 - 2 GEMs for tagging and tracking cosmic tracks
 - Four slots in the middle are for μ RWELLs.
- GEMs used for the software and the DAQ development. Should not take very long to understand basic features of µRWELLs with cosmic test stand.
- Test under beam: ~ early 2025

The large prototype for CLAS12

- 2D U/V readout: ±10°
- Strip pitch: 1 mm
- Capacitive sharing
- Different strip widths to find the optimum charge sharing

- Largest µRWELL built so far
- Readout: SRS APVs

Capacitive sharing

Readout layer with pad size = 6.4 mm

U strips: 3 different widths

Charge sharing between U and V strips significantly depends on the both of U and V strip widths.

To get the best strip width combination, several strip widths are considered, both for U and for V.

- Three different U strip widths
 - 175 μm, 262 μm and 350 μm
- Three different V strip widths
 - 355 μm, 500 μm, 650 μm

256 V355

V strips: 3 different widths

Cosmic data

- Testting with Cosmics: Hit threshold 4σ
- Reaching 95% at about 610 V

Summary

- Jefferson Lab is a unique place to do very low cross-section experiments with an electron beam
- DDVCS is one of such processes, and is a very valuable for the GPD prgram
- DDVCS can be measured with CLAS12 in Hall-B and SOLID in Hall-A with modest modifications of the experimental setup.
- Relatively new type of MPGD detectors µRWELLs, with their relatively simple design, low material budget, good position resolution and a higher gain are a promising type of detectors to be used for a high luminosity experiments.
- At JLab we have started testing high-rate versions µRWELL with cosmic muons.
- Detectors will go under beam test during the next available beam at JLab
- Stay tuned for new updates...

Backup

Notional CEBAF and EIC Efforts on One Chart

- Accelerator team has worked up an early schedule and cost estimate
 - Schedule assumptions based on a notional timing of when funds might be available (near EIC ramp down based on EIC V3 profile)
 - For completeness, Moller and SoLID (part of 12 GeV program) are shown; positron source dev shown
- EIC Project is shown

Activities		Fiscal Year																	
	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42
Moller (MIE, 413.3B, CD-2/3)																			
SoLID (LRP, Rec 4)																			
Positron Source (R&D)																			
CEBAF Upgrade preCDR/preplan																			
Positron Project (potential)																			
Transport e+																			
22 GeV Development (R&D)																			
22 GeV Project (potential)																			
EIC Project (V4.2, CD-1, CD-3A)																			
CEBAF Up																			
JLUO Annual Meeting June 10, 2024		14														Je	fers		ab cceierator Facilit

https://arxiv.org/abs/2112.00060

Progress in Particle and Nuclear Physics

Volume 127, November 2022, 103985

Review

Physics with CEBAF at 12 GeV and future opportunities

J. Arrington^a, M. Battaglieri^b, A. Boehnlein^b, S.A. Bogacz^b, W.K. Brooks^j, E. Chudakov^b, I. Cloët^c, R. Ent^b, H. Gao^d, J. Grames^b, L. Harwood^b, X. Ji^e^f, C. Keppel^b, G. Krafft^b, R.D. McKeown^{bh} and J. Napolitano^g, J.W. Qiu^{bh}, P. Rossi^{bn}, M. Schram^b, S. Stepanyan^b, J. Stevens^h, A.P. Szczepaniak^{lmb}, N. Toroⁱ, X. Zheng^k

Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Volume 1047, February 2023, 167782

Performance of a resistive micro-well detector with capacitive-sharing strip anode readout

Kondo Gnanvo a 🔉 🖂 , Nilanga Liyanage a, Bertrand Mehl ^b, Rui de Oliveira ^b

Strip pitch = 800 μ m