

# **CyMBal: Micromegas for EIC**



S. Polcher Rafael, F. Bossù, A. Bonenfant, M. Boonekamp, A. Francisco, C. Goblin, C. Libourel, V. Maâch, I. Mandjavidze, M. Vandenbroucke, D. Neff

# The future Electron Ion Collider



- Electron ion collider: Future collider in Brookhaven, NY, USA built on the basis of the current RHIC facility. First beam expected ~2033
- High luminosity ~10<sup>33</sup> cm<sup>-2</sup> s<sup>-1</sup>, e+p center of mass energy 20-140 GeV
- High polarization of electron and proton/ion beams ~70%
- ePIC will be the first experiment at EIC, the goal is to study how quarks and gluons behave in, interact with, and form hadronic states



ePIC detector diagram, E. Aschenauer

# Tracking at ePIC



ePIC tracking diagram, B. Eng TDR talk

# CyMBaL

- Low material budget: 0.5%X<sub>0</sub> in the active area
- Spatial resolution of ~150µm
- Timing resolution ~10ns
- Needs to fit in a tight space, ~5cm wide
- Inside a ~2T magnet



CyMBaL diagram, F. Bossù

- Cylindrical Micromegas tiles based on the CLAS12 BMT
- They already work in a high magnetic field with a higher rate than expected in ePIC
- Update CLAS12 design to have a 2D readout on one tile → Current R&D work



Single tile, F. Bossù

# Micromegas trackers



Acker, A. et al. The CLAS12 Micromegas Vertex Tracker. Nucl. Instrum. Methods (2020).

- To meet ePIC's needs: 2D trackers with low material budget and strip readout to limit the number of readout channels
  - → Resistive layer above the readout.
  - Signal is induced on the resistive and read by strips is both directions through capacitive coupling.

- A low field region where crossing particles ionize the gas. The electrons created are guided to the mesh.
- High field region below the mesh for amplification.
- The signal is induced on readout strip or pads at the bottom.



### Beam test at MAMI

- In June 2023, beam test on a 880MeV electron beam at MAMI in Mainz
- We tested prototypes build at CEA's MPGD Lab
- Different variations of readout patterns and resistive patterns
- Setup: reference silicon tracker and the prototypes are placed behind







### 08/07/2024

### S. Polcher Rafael - QNP 2024

### Banco reference tracker

- The Banco tracker is made from ALPIDE silicon chips developed for the ALICE experiment
- The chips are made of 29.24x26.88µm<sup>2</sup> pixels, we use ladders of 5 chips for an active area of 15x1.5cm<sup>2</sup>
- Banco has two arms each made of 2 ladders and a water cooling system to keep the temperature of the sensor steady



Alice MFT 4 chip ladder, https://cds.cern.ch/record/2748315



Diagram of one banco arm, V. Maâch



#### Full banco tracker, V. Maâch

# D1 & D2 prototypes

- Prototypes with an active area of 10x10cm<sup>2</sup>
- X and Y strips on two different layers
- D1 has multiple strip pitches on the same detector
- D2 has multiple inter-pitch
- High resistivity ~10 M $\Omega$ / $\Box$







#### 08/07/2024

#### S. Polcher Rafael - QNP 2024

# D1 & D2 cluster size

- Cluster size: number of strips fired per event and per layer
- Smaller pitch  $\rightarrow$  larger cluster size
- Strips on top with large inter-strip have a significantly smaller cluster size
- Increasing the the width of the top layer strips reduces the difference between the two layers





# D1 & D2 amplitude fraction

- The signal amplitude is proportional to the charge collected
- Amplitude fraction: fraction of the total event amplitude carried by one layer

$$AmplitudeFraction = \frac{\sum_{layerstrips} maxAmp}{\sum_{allstrips} maxAmp}$$

- Strips on the bottom are further away from the resistive layer so they collect less charges and are screened by the top layer
- D1 the top strips are not wide enough, D2 they are too wide



# D3 & D4 prototypes

- Prototypes with an active area of 13x13cm with 3 different pitches
- Strips made of interconnected square pads. X and Y on the same plane
- Low resistivity ~300 kΩ/□







# D3 & D4 amplitude fraction

- The charge collection on X and Y strips is
   even
- There is a bit more charge collected on the Y strips because they cover a larger surface





# D3 & D4 cluster size

Cluster size vs Pitch Only the smallest pitch can provide the sufficient 3.5 cluster size of ~2 D3 X, resist strips D3 Y, resist strips D3, the cluster size is larger in X where the • D4 X, resist full 3.0 charges can spread along the resistive strips D4 Y, resist full Cluster size 0.7 0 Full resistive layer Resistive strips in Y 1.5 1.0 0.8 1.0 1.5 2.0 Pitch [mm] D3 D4

# D3, closer look at charge spreading



### Time of arrival of the signal:

- On the strip in the center of the
- On all other strips in the cluster

Strips orthogonal to the resistive strips

Strips in the direction of the resistive strip

# Multiple scattering influence

Residues: difference between the position of the reference track and the position measured on the prototype



Large multiple scattering contribution

# **Geant4 simulation**

- Beam test geometry and beam implemented in Geant4
- Output: position of the electrons on each banco ladder and on each prototype
- Contribution of MSC estimated with the distribution of residues reconstructed track exact position on the prototypes



### Residues

٠

**Residues vs Pitch** 0.40 D1 B, strip=pitch D1 T, strip=25%pitch D2 B, strip=pitch 0.35 D2 T, strip=50%pitch [mm] Sesidues [mm] Residues [mm] 0.20 0.15 0.5 1.5 Pitch [mm]

Strips with 1mm or smaller provide a good resolution for the needs of ePIC

 Detector
 G4 msc [μm]

 D1
 96

 D2
 205

# Cosmic test bench @ CEA Saclay



- A cosmic test bench is setup at the lab to perform further tests
- More prototypes are currently in production

Trigger scintillators Reference Micromegas trackers Banco silicon tracker-Prototypes





# Outlook

- D1 with 1mm strips or smaller is a good starting point to meet ePIC requirements. But the strip to inter-strip ratio needs to be adjusted.
- More data taking with muons to avoid MSC and to complete testing is ongoing at DEDIP.
- More prototypes are in construction to test more resistive layer designs.
- A second beam test is being prepared for Fall 2024.



# Backup slides



# D1, a detailed look at residues

- Looking at the distribution of residues as a function of the position on the prototype structures appear
- They are due to events of different cluster sizes



### 08/07/2024

### Banco model

- To make build a more realistic track, for each banco ladder we define a circle of radius cste\*Edep centered on the real track position
- If the circle overlaps a pixel, the pixel is fired and added to the cluster
- To have size 3 clusters, extra condition on corner pixels. The signal must reach more that 2µm inside the pixel.





# **Typical Micromegas waveform**





### CyMBaL – Module



#### Dimensions:

- Size: 65 x 46 cm<sup>2</sup>
- Active area: 59x44 cm<sup>2</sup>
- r/o strips: ~1 mm pitch in both directions
- Readout strips per module: 1024
- 32 channels per connector  $\rightarrow$  32 connectors

### Services:

- HV: 2 channels (drift and resistive layer)
- Gas: 2 tubes (in and out)
  - Two tiles can be in series
- 4 FEBs per module
- 4 ASICs per FEB:
  - 4-lines bidirectional optical fiber FireFly to RDO
  - 2 short flex cables per ASIC
  - Low voltage
  - Cooling in and out, possibly in series
- CyMBaL needs already taken into account in ePIC general service plans

### Electron-Ion Collider

Tracking Detectors Review, March 20-21, 2024