

Variational hybrid algorithms for nuclear shell model simulations

Miquel Carrasco

Institut de Ciències del Cosmos
Universitat de Barcelona
mcarraco33@alumnes.ub.edu
QNP2024
Universitat de Barcelona 10 July 2024

Digital quantum computing

Instead of encoding information in classical bits, a digital quantum computer uses qubits, which can be held in a superposition of states $|0\rangle$ and $|1\rangle$.

Bit
 0 or 1

$$
\begin{gathered}
\text { Qubit } \\
|\Psi\rangle=\alpha|0\rangle+\beta|1\rangle
\end{gathered}
$$

Moreover, a state of many qubits can be entangled.

$$
|\Psi\rangle=\alpha|00\rangle+\beta|11\rangle
$$

Quantum circuits

To operate with qubits, quantum devices use quantum gates that represent unitary transformations on the qubits of a circuit.

A circuit can be parametrized!

The quantum device measures the qubits and forces them collapse into states $|0\rangle$ and $|1\rangle$.

The current quantum devices consist of $\sim \mathbf{1 0}^{\mathbf{2}} / \mathbf{1 0}^{\mathbf{3}}$ qubits. However, the error per gate is $\sim \mathbf{1} \%$.

ibm_fez	
QPU status	Online
Processor type	Heron r2

An actual quantum device available online

Qubits	EPLG	CLOPS
156	0.8%	3.8 K

We are living the Noise Intermediate-Scale Quantum (NISQ) Era.

We can split computations between quantum and classical devices.

Variational Quantum Eigensolvers

VQEs are hybrid algorithms based on the variational principle:

$$
\frac{\langle\varphi| \widehat{H}|\varphi\rangle}{\langle\varphi \mid \varphi\rangle} \geq E_{\text {g.s. }}
$$

We can build a parametrized ansatz $|\varphi(\theta)\rangle$ using a reference state and layering unitary operators.

$$
|\varphi(\theta)\rangle=e^{\theta \hat{T}}\left|\varphi_{0}\right\rangle
$$

- Each layer has a parameter and an operator.
- Each many-body system has a different operator pool.

UCC method

In the UCC method, the ansatz is layered with all the operators in the pool.

Number of operators in the pool = Number of ansatz layers

ADAPT method

Instead of layering the entire operator pool, the ADAPT method adds layers to the ansatz iteratively.

Each step, the ADAPT method selects the operator with the largest energy gradient.

H. R. Grimsley, S. E. Economou, E. Barnes, and N. J. Mayhall, An adaptive variational algorithm for exact molecular simulations on a quantum computer, Nat. Commun. 10, 3007 (2019).

Nuclear many-body problem

We want to compute the ground state of energy of light nuclei in the p shell.

$$
\begin{array}{cccc}
0 p_{1 / 2} & & \frac{5}{2} & \frac{4}{1} \\
0 p_{3 / 2} & -3 & \frac{2}{2} & \frac{0}{2} \\
m & -\frac{3}{2} & -\frac{1}{2} & \frac{1}{2}
\end{array}
$$

The valence space consists of the single particle states in the p shell.

Nuclear shell model Hamiltonian

$$
\widehat{H}_{e f f}=\sum_{i j} \varepsilon_{i} \hat{a}_{i}^{\dagger} \hat{a}_{i}+\frac{1}{4} \sum_{i j k l} \tilde{v}_{i j k l} \hat{a}_{i}^{\dagger} \hat{a}_{j}^{\dagger} \hat{a}_{l} \hat{a}_{k}
$$

Schrödinger equation

$$
\widehat{H}_{e f f}|\Psi\rangle=E|\Psi\rangle
$$

Classical simulation

Quantum computer

Classical computer

Our results are compared with exact g.s. energies, computed by diagonalising the Hamiltonian

UCC vs ADAPT: ${ }^{6}$ Li

We consider the methods to be successful if they converge to the g.s. with a relative error $<10^{-4}$

We quantify the efficiency of the methods using the number of total operations.

Using both UCC and ADAPT, we are able to converge to the ground state of ${ }^{6} \mathrm{Li}$ with a relative error of $\mathbf{1 0}^{-4}$. So far, ADAPT needs less operations than UCC to reach the g.s.

UCC vs ADAPT: p-shell nuclei

The ADAPT method needs less operations than the UCC method for nuclei with $\operatorname{dim}(\mathcal{H})<51$. For ${ }^{10} \mathrm{~B}$, the UCC needs less operations to converge.

UCC vs ADAPT: p-shell nuclei

The number of layers in the ADAPT ansatz increases linearly with the dimension of the Hilbert space.

The number of layers in the UCC ansatz stops increasing due to the limited size of the operator pool.

Conclusions \& Outlook

We were able to compute the ground state of energy of p-shell nuclei with a precision of 10^{-4} using the UCC and the ADAPT methods.

The number of layers of the ADAPT ansatz grows linearly with $\operatorname{dim}(\mathcal{H})$ and the number of layers of the UCC ansatz is limited to the operators available in the valence space. This results in the ADAPT becoming less efficient than the UCC for $\operatorname{dim}(\mathcal{H})>51$.

Outlook:

- Simulate nuclei in higher shells. How a larger valence space affects the UCC and ADAPT performance?
- Perform UCC and ADAPT on a quantum device. Bharti Bhoy and Paul Stevenson. Shell-model study of ${ }^{58} \mathrm{Ni}$ using quantum computing algorithm, 2024 A. Pérez-Obiol, A. M. Romero, J. Menéndez, A. Rios, A. García-Sáez, and B. Juliá-Díaz. Nuclear shell-model simulation in digital quantum

Thank you!

mcarraco33@alumnes.ub.edu https://github.com/miquel-carrasco/Master-s-thesis-codes

UCC vs ADAPT: ${ }^{8} \mathrm{~B}$

Basis states as ref. states for UCC, ${ }^{8}$ B

For the ${ }^{8} \mathrm{~B}$ nucleus, the ADAPT method needs 3 times less operations in order to converge to the g.s. than the UCC method.

The UCC error bars correspond to the ansätze with randomised operator orderings and initial parameter values

All states of the many-body basis perform very similar for the UCC.

For the ADAPT
some states need half of the operations than others

