QNP 2024-10th International Conference on Quarks and Nuclear Physics Barcelona (Spain) - July 8-12, 2024

Hybrid baryons in a constituent model

LORENZO CIMINO*
 UNIVERSITY OF MONS

* lorenzo.cimino@umons.ac.be

Table of contents

- Ordinary vs hybrid baryons
- Quark core model
> Quark core Hamiltonian
> Core - gluon interaction
- Helicity states
- Results and outlooks

Ordinary vs hybrid baryons

- Bound state of three quarks within a gluonic field: ordinary baryon
- Bound state of three quarks within an excited gluonic field: hybrid baryon

Ordinary vs hybrid baryons

- Bound state of three quarks within a gluonic field: ordinary baryon
- Bound state of three quarks within an excited gluonic field: hybrid baryon
$>$ Excited gluonic field \leftrightarrow Inclusion of a constituent gluon

Ordinary vs hybrid baryons

- Bound state of three quarks within a gluonic field: ordinary baryon
- Bound state of three quarks within an excited gluonic field: hybrid baryon
$>$ Excited gluonic field \leftrightarrow Inclusion of a constituent gluon
- Hybrid baryons in a constituent approach
> QCD-inspired potentials
$>$ Semi-relativistic kinematics $\sqrt{p_{i}^{2}+m_{i}^{2}}$

Quark core model

- Analogous to the quark-diquark model in baryons
- Interaction between quarks \rightarrow quark core C
> 3-body system

Quark core model

- Analogous to the quark-diquark model in baryons
- Interaction between quarks \rightarrow quark core C
> 3-body system
- Interaction between the core and the gluon
> 2-body system

Quark core model

- Analogous to the quark-diquark model in baryons
- Interaction between quarks \rightarrow quark core C
> 3-body system
- Interaction between the core and the gluon
> 2-body system
- Helicity of the gluon easier to consider

Quark core Hamiltonian

- Similar structure to the baryon (3 quarks)
> Cornell-inspired potential

$$
V_{q q q}(r)=\sum_{i<j} A F^{2}(i)\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|+B F(i) \cdot F(j)\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)^{-\mathbf{1}}
$$

Quark core Hamiltonian

- Similar structure to the baryon (3 quarks)
> Cornell-inspired potential

$$
\begin{aligned}
& V_{q q q}(r)=\sum_{i<j} A F^{2}(i)\left|r_{i}-r_{j}\right|+B F(i) \cdot F(j)\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)^{-\mathbf{1}} \\
& \quad \text { Confinement }
\end{aligned}
$$

Quark core Hamiltonian

- Similar structure to the baryon (3 quarks)
> Cornell-inspired potential

$$
V_{q q q}(r)=\sum_{i<j} A F^{2}(i)\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|+B F(i) \cdot F(j)\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)^{-1}
$$

$$
\text { Confinement } \longleftarrow
$$

Short-range interaction (OGE)

Quark core Hamiltonian

- Similar structure to the baryon (3 quarks)
$>$ Cornell-inspired potential

$$
V_{q q q}(r)=\sum_{i<j} A F^{2}(i)\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|+B F(i) \cdot F(j)\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)^{\mathbf{- 1}}
$$

$>A$ and B are constants [1]

Quark core Hamiltonian

- Similar structure to the baryon (3 quarks)
$>$ Cornell-inspired potential

$$
V_{q q q}(r)=\sum_{i<j} A F^{2}(i)\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|+B F(i) \cdot F(j)\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)^{\mathbf{- 1}}
$$

$>A$ and B are constants [1]
$>F^{2}(i)$ is the $S U(3)$ Casimir of the particle i (for a quark $F_{q}^{2}=4 / 3$)

Quark core Hamiltonian

- Similar structure to the baryon (3 quarks)
$>$ Cornell-inspired potential

$$
V_{q q q}(r)=\sum_{i<j} A F^{2}(i)\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|+B F(i) \cdot F(j)\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)^{\mathbf{- 1}}
$$

$>A$ and B are constants [1]
$>F^{2}(i)$ is the $S U(3)$ Casimir of the particle i (for a quark $F_{q}^{2}=4 / 3$)
$>F(i) \cdot F(j)=\frac{1}{2}\left[(F(i)+F(j))^{2}-F(i)^{2}-F(j)^{2}\right]$

Quark core Hamiltonian

- Computation of $F(i) \cdot F(j)$ via the colour w.f.

Quark core Hamiltonian

- Computation of $F(i) \cdot F(j)$ via the colour w.f.
$>$ Quarks in hybrid baryon form a colour octet 8

Quark core Hamiltonian

- Computation of $F(i) \cdot F(j)$ via the colour w.f.
$>$ Quarks in hybrid baryon form a colour octet 8
$>$ Colour w.f. ϕ has a mixed symmetry

Quark core Hamiltonian

- Computation of $F(i) \cdot F(j)$ via the colour w.f.
$>$ Colour w.f. ϕ has a mixed symmetry
- Three identical quarks $q q q$ and no excitations

$$
|q q q\rangle=\psi^{S} \xi^{S}\left(\chi^{M S} \phi^{M A}-\chi^{M A} \phi^{M S}\right)
$$

Quark core Hamiltonian

- Computation of $F(i) \cdot F(j)$ via the colour w.f.
$>$ Colour w.f. ϕ has a mixed symmetry
- Three identical quarks $q q q$ and no excitations

Quark core Hamiltonian

- Computation of $F(i) \cdot F(j)$ via the colour w.f.
$>$ Colour w.f. ϕ has a mixed symmetry
- Three identical quarks $q q q$ and no excitations

Quark core Hamiltonian

- Computation of $F(i) \cdot F(j)$ via the colour w.f.
$>$ Colour w.f. ϕ has a mixed symmetry
- Three identical quarks $q q q$ and no excitations

Quark core Hamiltonian

- Computation of $F(i) \cdot F(j)$ via the colour w.f.
$>$ Colour w.f. ϕ has a mixed symmetry
- Three identical quarks $q q q$ and no excitations

$>$ Spin-1/2 only

Quark core Hamiltonian

- Computation of $F(i) \cdot F(j)$ via the colour w.f.
$>$ Colour w.f. ϕ has a mixed symmetry
- Three identical quarks $q q q$ and no excitations

\Rightarrow Spin-1/2 only
$\Rightarrow F(i) \cdot F(j)=-1 / 6$ for every pairs

Quark core Hamiltonian

- Quark core Hamiltonian

$$
H_{C}=\sum_{i} \sqrt{\boldsymbol{p}_{i}^{2}+m^{2}}+\sum_{i<j} \frac{4 A}{3}\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|-\frac{B}{6}\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)^{-1}
$$

- Resolution of the Schrödinger equation by the expansion in oscillator bases [2]
> Acces to the mass m_{C} of the core, and the «size » $1 / \lambda$ of the system

Quark core Hamiltonian

- Quark core Hamiltonian

$$
H_{C}=\sum_{i} \sqrt{\boldsymbol{p}_{i}^{2}+m^{2}}+\sum_{i<j} \frac{4 A}{3}\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|-\frac{B}{6}\left(\left|\boldsymbol{r}_{i}-\boldsymbol{r}_{j}\right|\right)^{-\mathbf{1}}
$$

- Resolution of the Schrödinger equation by the expansion in oscillator bases [2]
$>$ Acces to the mass m_{C} of the core, and the «size » $1 / \lambda$ of the system

State	m_{B}	m_{C}	Δ	λ
$c c c$	4.822	5.119	0.297	0.825
$b b b$	14.401	14.894	0.493	1.261

Mass of ordinary baryon m_{B}, quark core m_{C}, difference Δ and size $1 / \lambda$ [3]

Core - gluon Hamiltonian

- Core - gluon interaction like gluon - gluon [4]

$$
V_{g g}(r)=A^{\prime} r-B^{\prime} \frac{1}{r}
$$

Core - gluon Hamiltonian

- Core - gluon interaction like gluon - gluon [4]

$$
V_{g g}(r)=A^{\prime} r-B^{\prime} \frac{1}{r}
$$

- Spatial extension of the core considered

$$
V_{C g}(\boldsymbol{r})=\int d \boldsymbol{r} \rho(\boldsymbol{r}) V_{g g}(|\boldsymbol{R}+\boldsymbol{r}|)
$$

$>\rho(\boldsymbol{r})$ is the quark density

$$
\rho(\boldsymbol{r})=\frac{\lambda^{3}}{\pi^{3 / 2}} e^{-\lambda^{2} r^{2}}
$$

Core - gluon Hamiltonian

- Core - gluon Hamiltonian

$$
H_{C g}=\sqrt{p_{C}^{2}+m_{C}^{2}}+\sqrt{p_{g}^{2}+m_{g}^{2}}+A^{\prime}\left[\frac{e^{-\lambda^{2} r^{2}}}{\sqrt{\pi} \lambda}+\left(r+\frac{1}{2 \lambda^{2} r}\right) \operatorname{erf}(r)\right]-B^{\prime} \frac{\operatorname{erf}(r)}{r}
$$

- Resolution of the Schrödinger equation by the Lagrange-mesh method [5]

Helicity formalism

- Coupling of the spin J_{C} of the quark core and the helicity $\lambda_{g}= \pm 1$ of the gluon
$>$ Helicity formalism of Jacob and Wick [6]
$>$ Well-known for 2-body systems but less for 3- or 4-body systems: quark core model

Helicity formalism

- Coupling of the spin J_{C} of the quark core and the helicity $\lambda_{g}= \pm 1$ of the gluon
$>$ Helicity formalism of Jacob and Wick [6]
$>$ Well-known for 2-body systems but less for 3- or 4-body systems: quark core model
- Basis of states $\left|H_{ \pm} ; J^{P} ; \lambda_{1} \lambda_{2}\right\rangle$ with well-defined J^{P} quantum numbers

> | See talk of Cyrille Chevalier |
| :---: |
| Thursday @ 15:20 |

Helicity formalism

- Coupling of the spin J_{C} of the quark core and the helicity $\lambda_{g}= \pm 1$ of the gluon
$>$ Helicity formalism of Jacob and Wick [6]
$>$ Well-known for 2-body systems but less for 3- or 4-body systems: quark core model
- Basis of states $\left|H_{ \pm} ; J^{P} ; \lambda_{1} \lambda_{2}\right\rangle$ with well-defined J^{P} quantum numbers
$>$ Expansion in canonical states $\left|{ }^{2 S+1} L_{J}\right\rangle$

$$
\left.\left|J M ; \lambda_{1} \lambda_{2}\right\rangle=\left.\sum_{L, S}\left(\frac{2 L+1}{2 J+1}\right)^{1 / 2}\left(L 0 S \lambda_{1}-\lambda_{2} \mid J \lambda_{1}-\lambda_{2}\right)\left(s_{1} \lambda_{1} s_{2}-\lambda_{2} \mid S \lambda_{1}-\lambda_{2}\right)\right|^{2 S+1} L_{J}\right\rangle
$$

> States of quantum mechanics

Helicity formalism

- Basis of states $\left|H_{ \pm} ; J^{P} ; \lambda_{1} \lambda_{2}\right\rangle$ with well-defined J^{P} quantum numbers
\Rightarrow Example for $J_{C}=1 / 2$ [3]

$$
\left\{\begin{array}{l}
\left.H_{+} ;\left(k+\frac{1}{2}\right)^{P} ; \frac{1}{2} 1\right\rangle \text { with } P=(-1)^{k} \Rightarrow \frac{1}{2}^{+}, \frac{3}{2}^{-}, \frac{5^{+}}{2}, \ldots \\
\left.H_{-} ;\left(k+\frac{1}{2}\right)^{P} ; \frac{1}{2} 1\right\rangle \text { with } P=-(-1)^{k} \Rightarrow \frac{1}{2}^{-}, \frac{3^{+}}{2}, \frac{5^{-}}{2}, \ldots \\
\left.H_{+} ;\left(k+\frac{3}{2}\right)^{P} ;-\frac{1}{2} 1\right\rangle \text { with } P=-(-1)^{k} \Rightarrow \frac{3}{2}^{-}, \frac{5^{+}}{2}, \ldots \\
\left.H_{-} ;\left(k+\frac{3}{2}\right)^{P} ;-\frac{1}{2} 1\right\rangle \text { with } P=(-1)^{k} \Rightarrow \frac{3}{2}^{+}, \frac{5^{-}}{2}, \ldots
\end{array}\right.
$$

Helicity formalism

- Basis of states $\left|H_{ \pm} ; J^{P} ; \lambda_{1} \lambda_{2}\right\rangle$ with well-defined J^{P} quantum numbers
\Rightarrow Example for $J_{C}=1 / 2$ [3]

$$
\begin{aligned}
& \left.\left.\left.\left|H_{+} ; J^{P} ; \frac{1}{2} 1\right\rangle=\left.\sqrt{\frac{2}{3}}\right|^{2} k+1_{J}\right\rangle+\left.\sqrt{\frac{k}{2(2 k+1)}}\right|^{4} k-1_{J}\right\rangle-\left.\sqrt{\frac{k+2}{6(2 k+1)}}\right|^{4} k+1_{J}\right\rangle, \\
& \left.\left.\left.\left|H_{-} ; J^{P} ; \frac{1}{2} 1\right\rangle=\left.\sqrt{\frac{2}{3}}\right|^{2} k_{J}\right\rangle+\left.\sqrt{\frac{k}{6(2 k+3)}}\right|^{4} k_{J}\right\rangle-\left.\sqrt{\frac{k+2}{2(2 k+3)}}\right|^{4} k+2_{J}\right\rangle, \\
& \left.\left.\left|H_{+} ; J^{P} ;-\frac{1}{2} 1\right\rangle=\left.\sqrt{\frac{k+3}{2(2 k+3)}}\right|^{4} k_{J}\right\rangle+\left.\sqrt{\frac{3(k+1)}{2(2 k+3)}}\right|^{4} k+2_{J}\right\rangle, \\
& \left.\left.\left|H_{-} ; J^{P} ;-\frac{1}{2} 1\right\rangle=\left.\sqrt{\frac{3(k+3)}{2(2 k+5)}}\right|^{4} k+1_{J}\right\rangle+\left.\sqrt{\frac{k+1}{2(2 k+5)}}\right|^{4} k+3_{J}\right\rangle .
\end{aligned}
$$

Helicity formalism

- Mixing of certain states through L^{2} operator
$>$ Present in the kinetic term

Helicity formalism

- Mixing of certain states through L^{2} operator
$>$ Present in the kinetic term
\Rightarrow Example for $J^{P}=\frac{3}{2}^{+}$[3]

$$
\left\langle\boldsymbol{L}^{2}\right\rangle=\left(\begin{array}{cc}
5 & -\sqrt{3} \\
-\sqrt{3} & 3
\end{array}\right)
$$

Helicity formalism

- Mixing of certain states through L^{2} operator
$>$ Present in the kinetic term
\Rightarrow Example for $J^{P}=\frac{3}{2}^{+}$[3]

$$
\left\langle\boldsymbol{L}^{2}\right\rangle=\left(\begin{array}{cc}
5 & -\sqrt{3} \\
-\sqrt{3} & 3
\end{array}\right)
$$

- Diagonalisation of L^{2} or adaptation of the Lagrange-mesh method

Helicity formalism

- Mixing of certain states through L^{2} operator
$>$ Present in the kinetic term
\Rightarrow Example for $J^{P}=\frac{3}{2}^{+}$[3]

$$
\left\langle\boldsymbol{L}^{2}\right\rangle=\left(\begin{array}{cc}
5 & -\sqrt{3} \\
-\sqrt{3} & 3
\end{array}\right)
$$

- Diagonalisation of L^{2} or adaptation of the Lagrange-mesh method

J^{P}	n_{r}	$l_{\text {eff }}$	$c c c g$	$b b b g$
$1 / 2^{ \pm}$	0	1	1.842	1.784
$3 / 2^{ \pm}$	0	1	1.842	1.784
$3 / 2^{ \pm}$	0	2	2.350	2.336
$1 / 2^{ \pm}$	1	1	2.552	2.469
$3 / 2^{ \pm}$	1	1	2.552	2.469
$3 / 2^{ \pm}$	1	2	2.938	2.880

Mass gap between hybrid $q q q g$ and ordinary $q q q$ baryon [3]

Conclusion and outlooks

- Spectrum of heavy hybrid baryons computed
> Quark core model
$>$ Helicity of gluon considered

J^{P}	n_{r}	$l_{\text {eff }}$	$c c c g$	$b b b g$
$1 / 2^{ \pm}$	0	1	1.842	1.784
$3 / 2^{ \pm}$	0	1	1.842	1.784
$3 / 2^{ \pm}$	0	2	2.350	2.336
$1 / 2^{ \pm}$	1	1	2.552	2.469
$3 / 2^{ \pm}$	1	1	2.552	2.469
$3 / 2^{ \pm}$	1	2	2.938	2.880

Mass gap between hybrid $q q q g$ and ordinary qqq baryon [3]

Conclusion and outlooks

- Spectrum of heavy hybrid baryons computed
> Quark core model
$>$ Helicity of gluon considered

J^{P}	n_{r}	$l_{\text {eff }}$	cccg	$b b b g$
$1 / 2^{ \pm}$	0	1	1.842	1.784
$3 / 2^{ \pm}$	0	1	1.842	1.784
$3 / 2^{ \pm}$	0	2	2.350	2.336
$1 / 2^{ \pm}$	1	1	2.552	2.469
$3 / 2^{ \pm}$	1	1	2.552	2.469
$3 / 2^{ \pm}$	1	2	2.938	2.880

Mass gap between hybrid $q q q g$ and ordinary qqq baryon [3]

Conclusion and outlooks

- Spectrum of heavy hybrid baryons computed
> Quark core model
$>$ Helicity of gluon considered

J^{P}	n_{r}	$l_{\text {eff }}$	cccg	$b b b g$
$1 / 2^{ \pm}$	0	1	1.842	1.784
$3 / 2^{ \pm}$	0	1	1.842	1.784
$3 / 2^{ \pm}$	0	2	2.350	2.336
$1 / 2^{ \pm}$	1	1	2.552	2.469
$3 / 2^{ \pm}$	1	1	2.552	2.469
$3 / 2^{ \pm}$	1	2	2.938	2.880

- Extension to large $-N_{c}$ QCD
$>$ Current experiment at JLab
> Universal potential model
> Quark core favoured by heavy quarks

Mass gap between hybrid $q q q g$ and ordinary $q q q$ baryon [3]

Thank you for your attention

Lattice QCD results

- Lattice QCD results for light hybrid baryons [1]

Flux tubes of hybrid baryons

(a)

(b)

