Two-neutrino double-beta decay to excited states of heavy nuclei

Beatriz Benavente de Lucas

Collaboration: Javier Ménendez, Dorian Frycz
Motivation

- Neutrinoless double-beta decay violates the Standard model of particles physics (D. Castillo’s previous talk)
- Two-neutrino double-beta decay is permitted in the Standard model of particles physics
Motivation

- Neutrinoless double-beta decay violates the Standard model of particles physics (D. Castillo’s previous talk)
- Two-neutrino double-beta decay is permitted in the Standard model of particles physics

- Study of $2\nu\beta\beta$ decay \rightarrow information for $0\nu\beta\beta$ decay
Motivation

- Neutrinoless double-beta decay violates the Standard model of particles physics (D. Castillo’s previous talk)
- Two-neutrino double-beta decay is permitted in the Standard model of particles physics

Beta decay

- **Antineutrino**

Double beta decay

- **Antineutrinos**

Neutrinoless double beta decay

- **e^-**

Study of $2\nu\beta\beta$ decay → information for $0\nu\beta\beta$ decay
- Initial and final states are common in both cases
Motivation

- Neutrinoless double-beta decay violates the Standard model of particles physics (D. Castillo’s previous talk)
- Two-neutrino double-beta decay is permitted in the Standard model of particles physics

Study of $2\nu\beta\beta$ decay \rightarrow information for $0\nu\beta\beta$ decay
- Initial and final states are common in both cases
- Many-body methods applicable in both cases
Motivation

- Experimental interest in the decay to the first excited 0^+ state

![Diagram](https://www.nndc.bnl.gov)

Motivation

- Experimental interest in the decay to the first excited 0^+ state
- Decay to ground state measured for 13 nuclei

![Diagram showing decay processes and energies](image.png)

Motivation

- Experimental interest in the decay to the first excited 0^+ state
- Decay to ground state measured for 13 nuclei
- Decay to 0^+_2 excited state measured for 100Mo, 150Nd

Motivation

- Experimental interest in the decay to the first excited 0^+ state
- Decay to ground state measured for 13 nuclei
- Decay to 0^+_2 excited state measured for 100Mo, 150Nd
- Similar study on 136Xe \rightarrow 136Ba

Motivation

- Experimental interest in the decay to the first excited 0^+ state
- Decay to ground state measured for 13 nuclei
- Decay to 0_2^+ excited state measured for 100Mo, 150Nd
- Similar study on 136Xe \rightarrow 136Ba

- 76Ge \rightarrow 76Se, $E(76\text{Se}, 0^+_2) = 1.122$ MeV.
- 82Se \rightarrow 82Kr, $E(82\text{Kr}, 0^+_2) = 1.488$ MeV.
- 130Te \rightarrow 130Xe, $E(130\text{Xe}, 0^+_2) = 1.793$ MeV.

Nuclear shell model

Schrödinger equation:

\[H_{\text{eff}} |\psi_{\text{eff}}\rangle = E |\psi_{\text{eff}}\rangle \]
Nuclear shell model

Schrödinger equation:

\[H_{\text{eff}} |\psi_{\text{eff}}\rangle = E |\psi_{\text{eff}}\rangle \]

Restriction to the valence space:

\(^{76}\text{Ge}, \ ^{82}\text{Se}: (1p_{3/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2})\)

\(^{130}\text{Te}: (0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2})\)
Nuclear shell model

Schrödinger equation:

$$H_{\text{eff}} \mid \psi_{\text{eff}} \rangle = E \mid \psi_{\text{eff}} \rangle$$

ANTOINE shell-model code:

Lanczos method

Restriction to the valence space:

`\setcolor{red}{\text{\textcolor{red}{\textbf{76}}Ge, \textcolor{red}{\textbf{82}}Se: (1p_{3/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2})}}`
`\setcolor{blue}{\text{\textcolor{blue}{\textbf{130}}Te: (0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2})}}`
Nuclear shell model
Schrödinger equation:

\[H_{\text{eff}} |\psi_{\text{eff}}\rangle = E |\psi_{\text{eff}}\rangle \]

ANTOINE shell-model code:
Lanczos method

↓

Linear combinations of the Slater determinants:

\[|\psi\rangle = \sum_\alpha C_\alpha |\phi_\alpha\rangle \]

\[|\phi_\alpha\rangle = \sum_{i=nljm} a_i^\dagger |0\rangle \]

Restriction to the valence space:

\(^{76}\text{Ge}, \; ^{82}\text{Se}: \; (1p_{3/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2})\]
\(^{130}\text{Te}: (0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2})\)
Two-neutrino $\beta \beta$ decay

- β decay governed by the Gamow-Teller operator: $\sigma \tau^-$

Matrix element:

$$M_{\nu}^2 = X_n \langle 0^+ f | P_a \sigma^a \tau^{-a} | 1^+ n \rangle \langle 1^+ n | P_b \sigma^b \tau^{-b} | 0^+ i \rangle E_n - (E_i - E_f) / 2 E_n$$

- Energy of intermediate state E_i
- Energy of initial state E_f
- Energy of final state E_n

Correction by quenching factor, q, on the matrix elements

Half-life:

$$T_{\nu} = \frac{G_{\nu}}{G_{\nu}} \frac{4 A}{m_e c^2} M_{\nu}^2$$

- G_{ν}: phase-space factor
- A: axial coupling
- m_e: electron mass
Two-neutrino $\beta\beta$ decay

- β decay governed by the Gamow-Teller operator: $\sigma\tau^-$
- Matrix element:

$$M^{2\nu} = \sum_n \frac{\langle 0_f^+ || \sum_a \sigma_a \tau_a^- || 1_n^+ \rangle \langle 1_n^+ || \sum_b \sigma_b \tau_b^- || 0_i^+ \rangle}{E_n - (E_i - E_f)/2}$$

E_n: Energy of intermediate state
E_i: Energy of initial state
E_f: Energy of final state
Two-neutrino $\beta\beta$ decay

- β decay governed by the Gamow-Teller operator: $\sigma \tau^-$
- Matrix element:

$$M^{2\nu} = \sum_n \frac{\langle 0_f^+ \| \sum_a \sigma_a \tau_a^- \| 1_n^+ \rangle \langle 1_n^+ \| \sum_b \sigma_b \tau_b^- \| 0_i^+ \rangle}{E_n - (E_i - E_f) / 2}$$

- E_n: Energy of intermediate state
- E_i: Energy of initial state
- E_f: Energy of final state

- Correction by quenching factor, q, on the matrix elements
Two-neutrino $\beta\beta$ decay

- β decay governed by the Gamow-Teller operator: $\sigma \tau^-$
- Matrix element:

$$M^{2\nu} = \sum_n \frac{\langle 0_f^+ \| \sum_a \sigma_a \tau_a^- \| 1^+_n \rangle \langle 1^+_n \| \sum_b \sigma_b \tau_b^- \| 0^+_i \rangle}{E_n - (E_i - E_f)/2}$$

- E_n: Energy of intermediate state
- E_i: Energy of initial state
- E_f: Energy of final state

- Correction by quenching factor, q, on the matrix elements
- Half-life:

$$\left(T_{1/2}^{2\nu} \right)^{-1} = G^{2\nu} g_A^4 \left(M^{2\nu} m_e c^2 \right)^2$$

- $G^{2\nu}$: phase-space factor
- g_A: axial coupling
- m_e: electron mass
4 different interactions
No interaction significantly better than the others
RGPROLATE: least descriptive of the nuclear structure
Spectrum

- 4 different interactions
- No interaction significantly better than the others
- RGPROLATE: least descriptive of the nuclear structure

Occupation study: \[|n_{g_9/2} n_{p_{1/2}} n_{f_{5/2}} n_{p_{3/2}} p_{g_{9/2}} p_{p_{1/2}} p_{f_{5/2}} p_{p_{3/2}} \rangle \]

JJ4BB: \[|0^{+}_{gs} \rangle = 0.60 |8 2 6 4 0 0 4 2 \rangle + \ldots \]

JUN45: \[|0^{+}_{gs} \rangle = 0.62 |8 2 6 4 0 0 4 2 \rangle + \ldots \]

RG545: \[|0^{+}_{gs} \rangle = 0.61 |8 2 6 4 0 0 4 2 \rangle + \ldots \]

RGPROLATE: \[|0^{+}_{gs} \rangle = 0.44 |1 0 0 6 4 0 0 6 0 \rangle + 0.32 |1 0 0 6 4 0 0 4 2 \rangle + \ldots \]
- JJ4BB, RGPROLATE: best description of 0_2^+ energy
- JUN45, RG545: higher 0_2^+ energy prediction
- W_f describing 0_2^+ state fragmented across all interactions
- JJ4BB, RGPROLATE: best description of 0^+_2 energy
- JUN45, RG545: higher 0^+_2 energy prediction
- Wf describing 0^+_2 state fragmented across all interactions
Matrix elements

\[M^{2\nu} = \sum_n \frac{\langle 0_f^+ | \sum_a \sigma_a \tau_a^- | 1_n^+ \rangle \langle 1_n^+ | \sum_b \sigma_b \tau_b^- | 0_i^+ \rangle}{E_n - (E_i - E_f)/2} \]
Matrix elements

\[M_{n_{\text{max}}}^{2\nu} = \sum_{n}^{n_{\text{max}}} \frac{\langle 0_f^+ \| \sum_a \sigma_a \tau_a^- \| 1_n^+ \rangle \langle 1_n^+ \| \sum_b \sigma_b \tau_b^- \| 0_i^+ \rangle}{E_n - (E_i - E_f)/2} \]

• Convergence of matrix elements
• Running matrix element: truncation of matrix elements for \(n \) intermediate states
• Calculated using Lanczos strength function

\[^{130}\text{Te}(0_{gs}^+) \rightarrow ^{130}\text{Xe}(0^+)\]
Matrix elements

- **JJ4BB and RGPROLATE:**
 - no cancellation of terms,
 - larger running matrix element

- **JUN45 and RG545:**
 - no cancellation of terms,
 - larger running matrix element
Matrix elements

- **JJ4BB and RGPROLATE:**
 - no cancellation of terms,
 - larger running matrix element

- **JUN45 and RG545:**
 - cancellation of terms,
 - smaller running matrix element

- **JUN45 and RG545:**
 - no cancellation of terms,
 - larger running matrix element

- **JJ4BB and RGPROLATE:**
 - cancellation of terms,
 - smaller running matrix element
Projected generator coordinate method (PGCM)

Variational approach:

- Configuration mixing of Hartree-Fock-Bogoliubov (HFB) states:
 \[\Psi_{\text{GCM}} = \sum_q f_q \phi_{\text{HFB}}(q) \]

- Similar deformations for all interactions

Figure: Contribution of each HFB wavefunction to fully mixed state for \(^{82}\text{Kr} (0^+_2)\) with all interactions

D. Frycz: 11/07, 17:30h, M1
Quenching

Quenching factor to correct the overestimation of matrix elements

- $q_\beta = 0.6$, from previous β decay studies from literature

Quenching

Quenching factor to correct the overestimation of matrix elements

- $q_\beta = 0.6$, from previous β decay studies from literature

- $q_{2\nu}$, from the study of the decay to the ground state (g.s.)

 Predicted half-life g.s. to g.s. $\xrightarrow{q_{2\nu}}$ Experimental half-life g.s. to g.s.

 A. Barabash. Universe. 6(10): 159 (2020)
Quenching

Quenching factor to correct the overestimation of matrix elements

- $q_\beta = 0.6$, from previous β decay studies from literature

- $q_{2\nu}$, from the study of the decay to the ground state (g.s.)
 Predicted half-life g.s. to g.s. $\xrightarrow{q_{2\nu}}$ Experimental half-life g.s. to g.s.
 A. Barabash. Universe. 6(10): 159 (2020)

<table>
<thead>
<tr>
<th>$^82\text{Se} \rightarrow ^{82}\text{Kr}$</th>
<th>$q_{2\nu}$</th>
<th>INT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.56</td>
<td>JJ4BB</td>
</tr>
<tr>
<td></td>
<td>0.55</td>
<td>JUN45</td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>RG545</td>
</tr>
<tr>
<td></td>
<td>0.44</td>
<td>RGPROLATE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$^76\text{Ge} \rightarrow ^{76}\text{Se}$</th>
<th>$q_{2\nu}$</th>
<th>INT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.64</td>
<td>JJ4BB</td>
</tr>
<tr>
<td></td>
<td>0.61</td>
<td>JUN45</td>
</tr>
<tr>
<td></td>
<td>0.62</td>
<td>RG545</td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>RGPROLATE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$</th>
<th>$q_{2\nu}$</th>
<th>INT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.47</td>
<td>GCN5082</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>QX_5082</td>
</tr>
</tbody>
</table>
Half-life predictions

Experimental limit: \(T_{1/2}^{2\nu}(^{82}\text{Se}, 0_{gs}^+ \rightarrow ^{82}\text{Kr}, 0_2^+) > 1.3 \cdot 10^{21}\text{yr} \)

Range of predictions: \(T_{1/2}^{2\nu}(^{82}\text{Se}, 0_{gs}^+ \rightarrow ^{82}\text{Kr}, 0_2^+) = (3.5 - 170) \cdot 10^{21}\text{yr} \)
Half-life predictions

- Prediction: longer half-lives than most obtained with other methods

Experimental limit: \(T^{2\nu}_{1/2}(^{82}\text{Se}, 0_{gs}^+ \to ^{82}\text{Kr}, 0_2^+) > 1.3 \cdot 10^{21}\text{yr} \)

Range of predictions: \(T^{2\nu}_{1/2}(^{82}\text{Se}, 0_{gs}^+ \to ^{82}\text{Kr}, 0_2^+) = (3.5 - 170) \cdot 10^{21}\text{yr} \)
Half-life predictions

- Prediction: longer half-lives than most obtained with other methods
- Prediction consistent with experimental limit

Experimental limit: \(T_{1/2}^{2\nu}(^{82}\text{Se}, 0_{gs}^+ \rightarrow ^{82}\text{Kr}, 0_{2}^+) > 1.3 \cdot 10^{21} \text{yr} \)

Range of predictions: \(T_{1/2}^{2\nu}(^{82}\text{Se}, 0_{gs}^+ \rightarrow ^{82}\text{Kr}, 0_{2}^+) = (3.5 - 170) \cdot 10^{21} \text{yr} \)

Half-life predictions

Range of predictions:

\[T_{1/2}^{2\nu}(\text{Ge}, 0_{gs}^+ \rightarrow \text{Se}, 0^+_2) = (2 - 260) \cdot 10^{24} \text{yr} \]

Range of predictions:

\[T_{1/2}^{2\nu}(\text{Te}, 0_{gs}^+ \rightarrow \text{Xe}, 0^+_2) = (7.7 - 130) \cdot 10^{25} \text{yr} \]

References:

Summary

- Study of 3 different $2\nu\beta\beta$ decays with different interactions in the context of the NSM
- Many-body methods applicable in the study of the neutrinoless double-beta decay
- Different running matrix elements, but are yet to find a plausible explanation for it
- Predicted half-lives consistent with experimental limits, close to it in some cases

The discrepancies between the prediction of half-lives makes the testing of these values a good way of validating the many-body methods used in the study. We really look forward to these results being tested!
Thank you!