

Two-neutrino double-beta decay to excited states of heavy nuclei

Beatriz Benavente de Lucas

Collaboration: Javier Ménendez, Dorian Frycz

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA

- Neutrinoless double-beta decay violates the Standard model of particles physics(D. Castillo's previous talk)
- Two-neutrino double-beta decay is permitted in the Standard model of particles physics

- Neutrinoless double-beta decay violates the Standard model of particles physics(D. Castillo's previous talk)
- Two-neutrino double-beta decay is permitted in the Standard model of particles physics

• Study of $2\nu\beta\beta$ decay \rightarrow information for $0\nu\beta\beta$ decay

- Neutrinoless double-beta decay violates the Standard model of particles physics(D. Castillo's previous talk)
- Two-neutrino double-beta decay is permitted in the Standard model of particles physics

- Study of $2\nu\beta\beta$ decay \rightarrow information for $0\nu\beta\beta$ decay
- Initial and final states are common in both cases

- Neutrinoless double-beta decay violates the Standard model of particles physics(D. Castillo's previous talk)
- Two-neutrino double-beta decay is permitted in the Standard model of particles physics

- Study of $2\nu\beta\beta$ decay \rightarrow information for $0\nu\beta\beta$ decay
- Initial and final states are common in both cases
- Many-body methods applicable in both cases

• Experimental interest in the decay to the first excited 0⁺ state

GERDA Collaboration et al J. Phys. G: Nucl. Part. Phys. 42 (2015)

Beatriz Benavente de Lucas

- Experimental interest in the decay to the first excited 0⁺ state
- Decay to ground state measured for 13 nuclei

GERDA Collaboration et al J. Phys. G: Nucl. Part. Phys. 42 (2015)

Beatriz Benavente de Lucas

- Experimental interest in the decay to the first excited 0⁺ state
- Decay to ground state measured for 13 nuclei
- Decay to 0⁺₂ excited state measured for ¹⁰⁰Mo, ¹⁵⁰Nd

GERDA Collaboration et al J. Phys. G: Nucl. Part. Phys. 42 (2015)

Beatriz Benavente de Lucas

- Experimental interest in the decay to the first excited 0⁺ state
- Decay to ground state measured for 13 nuclei
- Decay to 0⁺₂ excited state measured for ¹⁰⁰Mo, ¹⁵⁰Nd
- Similar study on $^{136} \text{Xe} \rightarrow {}^{136} \text{Ba}$

L. Jokiniemi, B. Romeo, C. Brase, J. Kotila, P. Soriano, A. Schwenk, J. Menéndez. Phys. Lett. B 838 (2023)

GERDA Collaboration et al J. Phys. G: Nucl. Part. Phys. 42 (2015)

Beatriz Benavente de Lucas

- Experimental interest in the decay to the first excited 0⁺ state
- Decay to ground state measured for 13 nuclei
- Decay to 0⁺₂ excited state measured for ¹⁰⁰Mo, ¹⁵⁰Nd
- Similar study on 136 Xe \rightarrow 136 Ba

L. Jokiniemi, B. Romeo, C. Brase, J. Kotila, P. Soriano, A. Schwenk, J. Menéndez. Phys. Lett. B 838 (2023)

Brookhaven National Laboratory. National Nuclear Data Center. https://www.nndc.bnl.gov (2023)

GERDA Collaboration et al J. Phys. G: Nucl. Part. Phys. 42 (2015)

Beatriz Benavente de Lucas

$$H_{eff}|\psi_{eff}
angle=E|\psi_{eff}
angle$$

$$H_{
m eff}|\psi_{
m eff}
angle=E|\psi_{
m eff}
angle$$

Restriction to the valence space:

⁷⁶Ge, ⁸²Se: $(1p_{3/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2})$ ¹³⁰Te: $(0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2})$

 $H_{\text{eff}} |\psi_{\text{eff}}\rangle = E |\psi_{\text{eff}}\rangle$

ANTOINE shell-model code: Lanczos method

E. Caurier, F. Nowacki. Acta Phys. Pol. B 30: 705 (1999)

Caurier E., et al. Rev. Mod. Phys. 77, 427 (2005)

Restriction to the valence space:

⁷⁶Ge, ⁸²Se: $(1p_{3/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2})$ ¹³⁰Te: $(0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2})$

 $H_{eff}|\psi_{eff}\rangle = E|\psi_{eff}\rangle$

ANTOINE shell-model code: Lanczos method

E. Caurier, F. Nowacki. Acta Phys. Pol. B 30: 705 (1999)

Caurier E., et al. Rev. Mod. Phys. 77, 427 (2005)

 \downarrow

Linear combinations of the Slater determinants:

$$ert \psi
angle = \sum_lpha oldsymbol{\mathcal{C}}_lpha ert \phi_lpha
angle \ ert \phi_lpha
angle = \sum_{i=n \textit{ljm}} oldsymbol{a}_i^\dagger ert oldsymbol{0}
angle$$

Restriction to the valence space:

⁷⁶Ge, ⁸²Se: $(1p_{3/2}, 0f_{5/2}, 1p_{1/2}, 0g_{9/2})$ ¹³⁰Te: $(0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2})$

• β decay governed by the Gamow-Teller operator: $\sigma \tau^-$

- β decay governed by the Gamow-Teller operator: $\sigma \tau^-$
- Matrix element:

$$M^{2\nu} = \sum_{n} \frac{\langle \mathbf{0}_{f}^{+} || \sum_{a} \sigma_{a} \tau_{a}^{-} || \mathbf{1}_{n}^{+} \rangle \langle \mathbf{1}_{n}^{+} || \sum_{b} \sigma_{b} \tau_{b}^{-} || \mathbf{0}_{i}^{+} \rangle}{E_{n} - (E_{i} - E_{f})/2}$$

- E_n : Energy of intermediate state
- E_i : Energy of initial state
- E_f : Energy of final state

- β decay governed by the Gamow-Teller operator: $\sigma \tau^-$
- Matrix element:

$$M^{2\nu} = \sum_{n} \frac{\langle \mathbf{0}_{f}^{+} || \sum_{a} \sigma_{a} \tau_{a}^{-} || \mathbf{1}_{n}^{+} \rangle \langle \mathbf{1}_{n}^{+} || \sum_{b} \sigma_{b} \tau_{b}^{-} || \mathbf{0}_{i}^{+} \rangle}{E_{n} - (E_{i} - E_{f})/2}$$

 E_n : Energy of intermediate state

- E_i : Energy of initial state
- E_f : Energy of final state
- Correction by quenching factor, q, on the matrix elements

- β decay governed by the Gamow-Teller operator: $\sigma \tau^-$
- Matrix element:

$$M^{2\nu} = \sum_{n} \frac{\langle \mathbf{0}_{f}^{+} || \sum_{a} \sigma_{a} \tau_{a}^{-} || \mathbf{1}_{n}^{+} \rangle \langle \mathbf{1}_{n}^{+} || \sum_{b} \sigma_{b} \tau_{b}^{-} || \mathbf{0}_{i}^{+} \rangle}{E_{n} - (E_{i} - E_{f})/2}$$

 E_n : Energy of intermediate state

- E_i : Energy of initial state
- E_f : Energy of final state
- Correction by quenching factor, q, on the matrix elements
 Half-life:

$$\left(T_{1/2}^{2\nu}
ight)^{-1}=G^{2\nu}g_{A}^{4}\left(M^{2\nu}m_{e}c^{2}
ight)^{2}$$

 $G^{2\nu}$: phase-space factor g_A : axial coupling

m_e : electron mass

- 4 different interactions
- No interaction significantly better than the others
- RGPROLATE: least descriptive of the nuclear structure

- 4 different interactions
- No interaction significantly better than the others
- RGPROLATE: least descriptive of the nuclear structure

Occupation study: $|n_{g_{9/2}} n_{p_{1/2}} n_{f_{5/2}} n_{p_{3/2}} p_{g_{9/2}} p_{p_{1/2}} p_{f_{5/2}} p_{p_{3/2}} \rangle$

JJ4BB:	$ 0^+_{gs} angle = 0.60 82640042 angle +$
JUN45:	$ 0^+_{gs} angle = 0.62 82640042 angle +$
RG545:	$ 0^+_{gs} angle = 0.61 82640042 angle +$
RGPROLATE:	$ 0^+_{gs}\rangle = 0.44 100640060\rangle + 0.32 100640042\rangle +$

- JJ4BB, RGPROLATE: best description of 0⁺₂ energy
- JUN45, RG545: higher 0⁺₂ energy prediction
- Wf describing 0⁺₂ state fragmented across all interactions

- JJ4BB, RGPROLATE: best description of 0⁺₂ energy
- JUN45, RG545: higher 0⁺₂ energy prediction
- Wf describing 0⁺₂ state fragmented across all interactions

$$M^{2\nu} = \sum_{n} \frac{\langle 0_{f}^{+} || \sum_{a} \sigma_{a} \tau_{a}^{-} || 1_{n}^{+} \rangle \langle 1_{n}^{+} || \sum_{b} \sigma_{b} \tau_{b}^{-} || 0_{i}^{+} \rangle}{E_{n} - (E_{i} - E_{f})/2}$$

$$M_{n_{max}}^{2\nu} = \sum_{n}^{n_{max}} \frac{\langle 0_{f}^{+} || \sum_{a} \sigma_{a} \tau_{a}^{-} || 1_{n}^{+} \rangle \langle 1_{n}^{+} || \sum_{b} \sigma_{b} \tau_{b}^{-} || 0_{i}^{+} \rangle}{E_{n} - (E_{i} - E_{f})/2}$$

- Convergence of matrix elements
- Running matrix element: truncation of matrix elements for n intermediate states
- Calculated using Lanczos strength function

- JJ4BB and RGPROLATE: no cancellation of terms, larger running matrix element
- JUN45 and RG545: no cancellation of terms, larger running matrix element

- JJ4BB and RGPROLATE: no cancellation of terms, larger running matrix element
- JUN45 and RG545: cancellation of terms, smaller running matrix element

- JUN45 and RG545: no cancellation of terms, larger running matrix element
- JJ4BB and RGPROLATE: cancellation of terms, smaller running matrix element

Projected generator coordinate method (PGCM)

Variational approach:

• Configuration mixing of Hartree-Fock-Bogoliubov (HFB) states: $|\Psi_{\text{GCM}}\rangle = \sum_q f_q |\phi_{\text{HFB}}(q)\rangle$

B. Bally, et al. Eur. Phys. J. A 60, 62 (2024)

• Similar deformations for all interactions

D. Frycz: 11/07, 17:30h, M1

Figure: Contribution of each HFB wavefunction to fully mixed state for 82 Kr (0_2^+) with all interactions

Quenching

Quenching factor to correct the overestimation of matrix elements

• $q_{eta} =$ 0.6, from previous eta decay studies from literature

E. Caurier et al. Phys. Lett. B 711: 1, 62-64 (2012)

Quenching

Quenching factor to correct the overestimation of matrix elements

- $q_{\beta} =$ 0.6, from previous β decay studies from literature E. Caurier et al. Phys. Lett. B 711: 1, 62-64 (2012)
- $q_{2\nu}$, from the study of the decay to the ground state (g.s.) Predicted half-life g.s. to g.s. $\xrightarrow{q_{2\nu}}$ Experimental half-life g.s. to g.s.

A. Barabash. Universe. 6(10): 159 (2020)

Quenching

Quenching factor to correct the overestimation of matrix elements

- $q_{\beta} =$ 0.6, from previous β decay studies from literature E. Caurier et al. Phys. Lett. B 711: 1, 62-64 (2012)
- $q_{2\nu}$, from the study of the decay to the ground state (g.s.) Predicted half-life g.s. to g.s. $\xrightarrow{q_{2\nu}}$ Experimental half-life g.s. to g.s.

A. Barabash. Universe. 6(10): 159 (2020)

	$q_{2\nu}$	INT
82 Se $ ightarrow$ ⁸² Kr	0.56	JJ4BB
82 Se $ ightarrow$ 82 Kr	0.55	JUN45
82 Se $ ightarrow$ 82 Kr	0.54	RG545
82 Se $ ightarrow$ 82 Kr	0.44	RGPROLATE
76 Ge $ ightarrow$ ⁷⁶ Se	0.64	JJ4BB
$^{76} ext{Ge} ightarrow ^{76} ext{Se}$	0.61	JUN45
$^{76} ext{Ge} ightarrow ^{76} ext{Se}$	0.62	RG545
$^{76} ext{Ge} ightarrow ^{76} ext{Se}$	0.54	RGPROLATE
130 Te $ ightarrow$ 130 Xe	0.47	GCN5082
$^{130} ext{Te} ightarrow ^{130} ext{Xe}$	0.75	QX_5082

NEMO-3 collaboration. Nuc. Phys. A 996: 121701 (2020) E. A. Coello Pérez, J. Menéndez, A. Schwenk. Phys. Rev. C 98: 045501 (2018) J. Toivanen, J. Suhonen. Phys. Rev. C 55: 2314 (1997) J. Barea, J. Kotila, F. Iachello. Phys. Rev. C 91: 034304 (2015)

Experimental limit: $T_{1/2}^{2\nu}({}^{82}\text{Se}, 0_{gs}^+ \rightarrow {}^{82}\text{Kr}, 0_2^+) > 1.3 \cdot 10^{21}\text{yr}$ Range of predictions: $T_{1/2}^{2\nu}({}^{82}\text{Se}, 0_{gs}^+ \rightarrow {}^{82}\text{Kr}, 0_2^+) = (3.5 - 170) \cdot 10^{21}\text{yr}$

Beatriz Benavente de Lucas

 Prediction: longer half-lives than most obtained with other methods

NEMO-3 collaboration. Nuc. Phys. A 996: 121701 (2020) E. A. Coello Pérez, J. Menéndez, A. Schwenk. Phys. Rev. C 98: 045501 (2018) J. Toivanen, J. Suhonen. Phys. Rev. C 55: 2314 (1997) J. Barea, J. Kotila, F. Iachello. Phys. Rev. C 91: 034304 (2015)

Experimental limit: $T_{1/2}^{2\nu}({}^{82}\text{Se}, 0_{gs}^+ \rightarrow {}^{82}\text{Kr}, 0_2^+) > 1.3 \cdot 10^{21}\text{yr}$ Range of predictions: $T_{1/2}^{2\nu}({}^{82}\text{Se}, 0_{gs}^+ \rightarrow {}^{82}\text{Kr}, 0_2^+) = (3.5 - 170) \cdot 10^{21}\text{yr}$

- Prediction: longer half-lives than most obtained with other methods
- Prediction consistent with experimental limit

NEMO-3 collaboration. Nuc. Phys. A 996: 121701 (2020) E. A. Coello Pérez, J. Menéndez, A. Schwenk. Phys. Rev. C 98: 045501 (2018) J. Toivanen, J. Suhonen. Phys. Rev. C 55: 2314 (1997) J. Barea, J. Kotila, F. Iachello. Phys. Rev. C 91: 034304 (2015)

Experimental limit: $T_{1/2}^{2\nu}({}^{82}\text{Se}, 0_{gs}^+ \rightarrow {}^{82}\text{Kr}, 0_2^+) > 1.3 \cdot 10^{21}\text{yr}$ Range of predictions: $T_{1/2}^{2\nu}({}^{82}\text{Se}, 0_{gs}^+ \rightarrow {}^{82}\text{Kr}, 0_2^+) = (3.5 - 170) \cdot 10^{21}\text{yr}$

S. Stoica, I. Mihut. Nucl. Phys. A 602: 197 (1996) M. Aunola, J. Suhonen. Nucl. Phys. A 602: 133 (1996) MAJORANA Collaboration. Phys.Rev.C 103: 1, 015501 (2021) J. Barea, J. Kotila, F. Iachello. Phys. Rev. C 91: 034304 (2015) E. A. Coello Pérez, J. Menéndez, A. Schwenk. Phys. Rev. C 98: 045501 (2018)

Range of predictions:

$$T_{1/2}^{2\nu}({}^{76}\text{Ge}, 0_{gs}^+ \rightarrow {}^{76}\text{Se}, 0_2^+) = (2 - 260) \cdot 10^{24} \text{yr}$$

J. Barea, J. Kotila, F. Iachello. Phys. Rev. C 91: 034304 (2015) E. Andreotti et al. Phys. Rev. C 85: 045503 (2012) E. A. Coello Pérez, J. Menéndez, A. Schwenk. Phys. Rev. C 98: 045501 (2018)

Range of predictions: $T_{1/2}^{2\nu}(^{130}\text{Te}, 0^+_{gs} \rightarrow ^{130}\text{Xe}, 0^+_2) = (7.7 - 130) \cdot 10^{25} \text{yr}$

Summary

- Study of 3 different 2νββ decays with different interactions in the context of the NSM
- Many-body methods applicable in the study of the neutrinoless double-beta decay
- Different running matrix elements, but are yet to find a plausible explanation for it
- Predicted half-lives consistent with experimental limits, close to it in some cases

The discrepancies between the prediction of half-lives makes the testing of these values a good way of validating the many-body methods used in the study. We really look forward to these results being tested!

Thank you!

Institut de Ciències del Cosmos UNIVERSITAT DE BARCELONA EXCELENCIA MARIA DE MAEZTU 2020-2023

