Direct measurement of charm baryon dipole moments at LHC

Jinlin Fu

University of Chinese Academy of Sciences

On behalf of the ALADDIN Collaboration

July 8-12, QNP 2024, Barcelona, Spain

Introduction

First measurement of electromagnetic dipole moments of Λ_c^+ and Ξ_c^+

CERN-PBC-REPORT-2018-008

Quark model:
$$\mu_{\Lambda_c^+} = \mu_{\Xi_c^+} = \mu_c$$

HQFT: require at least 10% precision from experiment

Charm quark might have special coupling with new physics

Global EDM analysis needs experimental input from charm sector

How to access EDM and MDM

EDM and **MDM** extracted from spin procession in EM field

 $\frac{d\mathbf{s}}{dt} = \mathbf{s} \times \mathbf{\Omega} \qquad \mathbf{\Omega} = \mathbf{\Omega}_{\mathrm{MDM}} + \mathbf{\Omega}_{\mathrm{EDM}} + \mathbf{\Omega}_{\mathrm{TH}}$

$$\Omega_{\text{MDM}} = \frac{\underline{g}\mu_B}{\hbar} \left(\mathbf{B} - \frac{\gamma}{\gamma+1} (\boldsymbol{\beta} \cdot \mathbf{B}) \boldsymbol{\beta} - \boldsymbol{\beta} \times \mathbf{E} \right)$$
$$\Omega_{\text{EDM}} = \frac{\underline{d}\mu_B}{\hbar} \left(\mathbf{E} - \frac{\gamma}{\gamma+1} (\boldsymbol{\beta} \cdot \mathbf{E}) \boldsymbol{\beta} - \boldsymbol{\beta} \times \mathbf{B} \right)$$

C Experimental requirement

Sizable polarized Λ_c^+ and Ξ_c^+ sources

Enough flight length/Strong EM field for spin procession

Excellent detector for polarization measurement from angular analysis

C Significant challenge for charm baryons: $\tau \sim 10^{-13}$ s

New experiment concept

 \square Polarized Λ_c^+ and Ξ_c^+ sources produced from fixed-target $p{\rm W}$ collisions at LHC $\sqrt{s}\approx 110{\rm GeV}$

G Flight length:

high boost $\gamma \approx 600 - 900 \Longrightarrow \beta \gamma \tau c \approx 7 - 10$ cm

Strong EM field induced from bent crystal Spin procession by channeling effect

Spin-polarization analysis for i.e. $\Lambda_c^+ \rightarrow p K^- \pi^+$ decays $\mathcal{W} \propto 1 + \alpha_{\text{eff}} s' \cdot \hat{k}_{\pm}$

$$\Phi \approx \frac{g-2}{2} \gamma \theta_C$$
$$s'_x \approx s_0 \frac{d}{g-2} [\cos \Phi - 1]$$

Eur. Phys.J.C(2017)77:828 PRD 103, 072003 (2021)

Double-crystal setup for MDM and EDM measurement

TWOCRYST: proof-of-principle test at LHC

- Validate crystal properties, channeling eff. at TeV beam
- Demonstration of operational feasibility
- Validation of achievable PoT
- Background studies for RICH detector

Details in Pascal Hermes slides

Bent crystal testbeam at CERN SPS

Two silicon crystals: splitting crystal (TCCS) and precession crystal (TCCP)
Produced by INFN Ferrara (A. Mazzolari). Tested at SPS H8 with 180GeV/c hadron beam (Aug. 2023)

□ Will Probe TCCP performance at energies 1-3TeV in TWOCRYST PoP test

Proposed experiment at LHC and timeline

Two alternative proposals: i) dedicated experiment at IR3 (baseline) ii) use LHCb detector at IP8 (fallback option)

	Pro	Cons	4000 B2 IR5 (CMS) B1
IR3	Optimal experiment and detector. PID information	More resources needed. New detector, services (long cables, cooling)	2000 IR4 (RF) IR6 (beam extraction) IR3 (momentum collimation)
HCb	Use existing tracking detector and infrastructure. Experimental area	No PID for p>100 GeV. Potential interference with LHCb core program	-2000 IR2 (ALICE, IR8 (LHCb, injection B1) injection B2 -4000 -4000 -4000 -2000 0 2000

LHC IR3 venue

IR3 region for experiment

Detector layout

Spectrometer: 440 cm length

Track

500 cm

Helium (or neon)

RICH: 500 cm length

Photosensor array

Helium radiator gas with SiPM array

Specification required for tracking detectors

	pitch (μ m)	hit rate (MHz/cm ²)	fluence (n_{eq}/cm^2)	area (cm ²)	tech. solution
Upstream	55	250	$3.5 imes10^{15}$	10	Si pixel
Downstream	100	30	$9.0 imes 10^{13}$	30	Si pixel/strip

Spectrometer layout

 $\square Cover the pseudorapidity 5 < \eta < 9$

VELO pixel sensors in four Roman Pots, two layers for each RP

 \Box A dipole magnet MCBWV available in situ, B=1.1T, L=1.7m

 $\square \text{ Momentum resolution: } \frac{\sigma_p}{p} \approx \frac{2p}{qBLD} \sigma_x$ $p=500 \text{GeV}, \ \sigma_x=10 \mu\text{m} \Longrightarrow \sigma_p/p \approx 2 \ \%$

Spectrometer performance from simulation

 $\Box Simulated \Lambda_c^+ \to pK^-\pi^+ decays$

Good reconstruction efficiency and mass resolution

 \Box Good momentum resolution of daughter particles for channeled Λ_c^+

Roman Pot and VELO module

ATLAS-ALFA Roman Pot

Detector housing

LHCb VELO module assembled

LHCb UT silicon strip sensor and front-end electronics

RICH detector

- High-momentum charged particles at 1 TeV/c range
- ☐ Helium radiator gas n=1.000035, L=500cm, $N_{pe} \approx$ 12, cover relative large momentum range w.r.t. neon gas

Separation power

J. FU

Physics reach

□ First measurement of MDM and EDM of Λ_c^+ and Ξ_c^+ in 2 year data taking assuming 10⁶p/s, 2 cm W target, polarization ~20% sensitivity: $2 \times 10^{-2} \mu_N$ and 3×10^{-16} e cm with 1.4×10^{13} PoT

C Provide opportunity for measurements in the very forward region $5 < \eta < 9$, i.e. cross-section of charm hadron production, QCD polarization, J/ψ photo production

 \Box Measurement of τ MDM and EDM (further R&D)

Proponents of ALADDIN LOI and other authors

A proto-collaboration of the ALADDIN experiment, 58 members, 19 groups from 8 countries

K. Akiba¹, F. Alessio², M. Benettoni³, A. Bizzetti^{23,24}, F. Borgato^{3,4}, F. Bucci²³, R. Cardinale^{5,6}, S. Cesare^{7,8}, M. Citterio⁸, V. Coco², P. Collins², E. Dall'Occo⁹, M. Ferro-Luzzi², A. Fomin²¹, R. Forty², J. Fu¹⁰, P. Gandini⁸, M. Giorgi^{11,12}, J. Grabowski¹³, S. J. Jaimes Elles¹⁴, S. Jakobsen², E. Kou²¹, G. Lamanna^{11,12}, H. Li^{10,16}, S. Libralon¹⁴, C. Maccani^{3,4}, D. Marangotto^{7,8}, F. Martinez Vidal¹⁴, J. Mazorra de Cos¹⁴, A. Merli¹⁵, H. Miao^{10,16}, N. Neri^{7,8}, S. Neubert¹³, A. Petrolini^{5,6}, A. Pilloni¹⁷, J. Pinzino¹², M. Prest¹⁹, P. Robbe²¹, L. Rossi^{7,8}, J. Ruiz-Vidal^{14,22}, I. Sanderswood¹⁴, A. Sergi^{5,6}, G. Simi^{3,4}, M. Sorbi^{7,8}, M. Sozzi^{11,12}, E. Spadaro Norella^{5,6}, A. Stocchi²¹, G. Tonani^{7,8}, T. Tork^{7,8}, A. Triossi^{3,4}, N. Turini^{18,12}, E. Vallazza^{19,20}, S. Vico Gil¹⁴, Z. Wang⁸, M. Wang⁸, T. Xing⁸, M. Zanetti^{3,4}, F. Zangari^{7,8}

¹Nikhef, National institute for subatomic physics, Amsterdam, Nederlands ²CERN - Geneva, Switzerland ³INFN Sezione di Padova, Padua, Italy ⁴Università degli Studi di Padova, Padua, Italy ⁵Università di Genova, Genoa, Italy ⁶INFN Sezione di Genova, Genoa, Italy ⁷Università degli Studi di Milano, Milan, Italy ⁸INFN Sezione di Milano, Milan, Italy ⁹Technische Universität Dortmund (TU), Dortmund, Germany ¹⁰University of Chinese Academy of Sciences ¹¹Università di Pisa, Pisa, Italy ¹²INFN Sezione di Pisa, Pisa, Italy ¹³University of Bonn, Bonn, Germany ¹⁴IFIC - Universitat de Valencia-CSIC, Valencia, Spain ¹⁵Institute of Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland ¹⁶Institute of High Energy Physics, Chinese Academy of Sciences ¹⁷INFN Sezione di Catania, Università degli Studi di Messina, Messina, Italy ¹⁸Università degli Studi di Siena, Siena, Italy ¹⁹INFN Sezione di Milano Bicocca, Milan, Italy ²⁰INFN Sezione di Trieste, Trieste, Italy ²¹IJCLab, Orsay, France ²²Lund University, Sweden ²³INFN Sezione di Firenze, Firenze, Italy ²⁴Università degli Studi di Modena e Reggio Emilia, Italy

 With support from PBC and TWOCRYST collaboration
Pascal Dominik Hermes
Stefano Redaelli
Marcin Patecki
Daniele Mirachi
Kay Dewhurst

. . .

Summary

Proposed a dedicated experiment (ALADDIN) for first measurement of EDM and MDM of charm baryons

TWOCRYST proof-of-principle test at LHC will be performed in the end of 2025

C ALADDIN experiment at LHC IR3 aims to take data in LHC Run4

Lol for ALADDIN experiment is in preparation and will be released soon

Thank you!