Prospects for direct measurements of Λ baryon dipole moments

Nicola Neri University of Milan & INFN Milan on behalf of the LHCb collaboration

QNP 2024, Barcelona, 11 July 2024

European Research Council Established by the European Commission

- Introduction
- Physics motivations for measurements of dipole moments
- Experimental method for strange baryons
- Preliminary studies and plans
- Summary

Introduction

• $\Lambda = [uds]$ $m = 1115.683 \pm 0.006 \text{ MeV}$ $\tau = (2.617 \pm 0.010) \times 10^{-10} \text{ s}$ Spin = 1/2

 δ = electric dipole moment (EDM) μ = magnetic dipole moment (MDM)

$$H = -\boldsymbol{\mu} \cdot \boldsymbol{B} - \boldsymbol{\delta} \cdot \boldsymbol{E}$$

Time reversal, Parity:

Nicola Neri

INFN

$$d\mu_N \mathbf{S} \cdot \mathbf{E} \xrightarrow{T,P} - d\mu_N \mathbf{S} \cdot \mathbf{E}$$

The EDM violates *T* and *P* and, via *CPT* theorem, violates *CP*

	С	Ρ	Τ
μ		+	-
δ		+	Ι
Ε	—	—	+
B	_	+	-
S	+	+	_

3

EDM: a probe for CPV beyond the SM

$$\mathscr{L}_{CPV} = \mathscr{L}_{CKM} + \mathscr{L}_{\overline{\theta}} + \mathscr{L}_{BSM}$$

- SM: negligible CKM contribution; $\overline{\theta}$ -QCD for possible CPV in strong interaction, $\overline{\theta} \leq 10^{-10}$ from neutron EDM limit

EDM: a probe for CPV beyond the SM

$$\mathscr{L}_{CPV} = \mathscr{L}_{CKM} + \mathscr{L}_{\overline{\theta}} + \mathscr{L}_{\underline{BSM}}$$

- BSM: potential large contributions by new physics scale Λ_{NP} and CP-violating phase ϕ_{CPV}

$$\delta_{BSM} \approx (10^{-16} e \text{cm}) \left(\frac{250 \text{ GeV}}{\Lambda_{NP}} \right)^2 \sin \phi_{CPV} y_f F$$

Examples of **BSM** contributions

Rev. Mod. Phys. **91**, 015001 (2019)

erc SD QNP 2024

5

Status of EDM measurements

- Need to measure many systems to disentangle the underlying source of CPV
- World-wide experimental effort is ongoing to improve current measurements and explore new systems

Baryon magnetic moments

- $g \neq 2$ due to internal substructure, not point-like fermions
- From Λ baryon MDM to s quark MDM using quark model ³

- Precise measurement of Λ MDM
- Test of *CPT* symmetry with Λ MDM

Corresponding proton measurements

Experi-

ment

Simple model

- $\mu_{\rm p} = 2.79284734462 \ (82) \ \mu_{\rm N}$
- G. Schneider et al., Science 358, 1081 (2017)

 $\mu_{\overline{p}} = -2.7928473441(42)\mu_{\rm N}$

C. Smorra et al., Nature 550 (2017) 7676, 371-374

7

Proposed experimental method for neutral long-lived Λ baryons in LHCb $\tau \approx 10^{-10}\,\text{s}$

F. J. Botella et al., Eur.Phys.J.C 77 (2017) 181

LHCb Upgrade detector

erc 🖲 QNP 2024

Status of art for Λ baryon EDM/MDM

- Current limit on Λ baryon **EDM** < $1.5 \times 10^{-16} e$ cm at 95% CL L. Pondrom et al., Phys. Rev. D 23, 814 (1981)
- Measurement of **MDM** $\mu_{\Lambda}=(-0.6138\pm0.0047)\mu_{N}$ but no measurement for $\overline{\Lambda}$ exists Phys.Rev.Lett. 41 (1978) 1348
- Measurement of MDM of $\overline{\Lambda}$ is needed for a **CPT** test
- New BESIII measurement of Λ decay parameter inconsistent with previous results $\alpha = 0.750 \pm 0.009 \pm 0.004$ Nature Phys. 15 (2019) 631-634
- Need **new measurements** to improve previous results, also based on wrong α value

A baryon precession in the magnet

- Long-lived Λ baryons can travel through the LHCb **dipole magnet**
- Spin precession occurs in B field $\frac{dS}{d\tau} = \mu \times B^* + \delta \times E^*$
- ► Select ∧ (anti-∧) from weak decays

$$\begin{split} \Lambda_b^0 &\to J/\psi \Lambda, \, \Xi_c^0 \to \Lambda K^- \pi^+, \\ \Lambda_c^+ &\to \Lambda \pi^+ \pi^- \pi^+, \, \Xi_c^0 \to \Xi^- (\Lambda \pi^-) \pi^+, \, \text{etc} \end{split}$$

- Large longitudinal polarisation (up to 100%) due to parity violation in the weak decay
- Challenge: reconstruct A baryon decays after the magnet using T tracks

erc **S D** QNP 2024

Novel experimental technique for strange baryons

EDM/MDM from spin precession of Λ baryon in LHCb dipole magnet

Novel experimental technique for strange baryons

EDM/MDM from spin precession of Λ baryon in LHCb dipole magnet

Novel experimental technique for strange baryons

EDM/MDM from spin precession of Λ baryon in LHCb dipole magnet

erc 🖲 QNP 2024

Λ baryon reconstruction downstream of the magnet

Λ baryon reconstruction downstream of the magnet

• Due to the small Q-value in the $\Lambda \rightarrow p\pi^-$ decay a "ghost vertex" can be reconstructed

Λ baryon reconstruction downstream of the magnet

 Ghost vertex contribution largely suppressed by using a multivariate classifier (CatBoost) based on kinematic and geometric variables: from 30% to 6%
 CERN-LHCb-DP-2022-001

17

erc 🖲 QNP 2024

Angular resolution

 Helicity angles of the protons benefit of ghost vertex rejection. Significant improvements after BDT selection

INFN

erc 💭 QNP 2024

Vertex resolution

- Ghost vertex has quite large impact on vertex resolution
- Significant improvement after BDT selection

erc 💭 QNP 2024

$$\Lambda_b^0 \to J/\psi \Lambda$$
 reconstruction on data

- Reconstructed Λ decays between 6.0 7.6 m from the IP. Exploiting existing dimuon trigger on Run 1-2 data
- Λ baryon dipole moment measurement in progress

20

I QNP 2024

erc

 $B^0 \rightarrow J/\psi K_S^0$ reconstruction on data

• Reconstructed K_S^0 decays between 6.0 - 7.6 m from the IP as control sample

INFN HCP Nicola Neri

21

erc 🖲 QNP 2024

Plans for Run 3 (2022-2025, 50 fb⁻¹)

- New software trigger of Upgrade I detector allows to reconstruct Λ from charm decays. Expected several orders of magnitude increase in yield with respect to $\Lambda_b^0 \to J/\psi \Lambda$
- Developed new charm (and beauty) hadron trigger lines for Λ decays

		Eur. E	hys. J. C 77 (2017) 181	
SL events	$N_A/{\rm fb}^{-1}~(imes 10^{10})$	LL events, $\Xi^- \rightarrow \Lambda \pi^-$	$N_A/{ m fb}^{-1}~(imes 10^{10})$	
$\overline{\Xi_c^0} ightarrow \Lambda K^- \pi^+$	7.7	$arepsilon_c^0 o arepsilon^- \pi^+ \pi^+ \pi^-$	23.6	
$\Lambda_c^+ o \Lambda \pi^+ \pi^+ \pi^-$	3.3	$E_c^0 ightarrow E^- \pi^+$	7.1	
$\Xi_c^+ \to \Lambda K^- \pi^+ \pi^+$	2.0	$\Xi_c^+ ightarrow \Xi^- \pi^+ \pi^+$	6.1	
$\Lambda_c^+ o \Lambda \pi^+$	1.3	$\Lambda_c^+ o \Xi^- K^+ \pi^+$	0.6	
$\Xi_c^0 \to \Lambda K^+ K^- $ (no ϕ)	0.2	$\Xi_c^0 \to \Xi^- K^+$	0.2	
$\Xi_c^0 \to \Lambda \phi(K^+K^-)$	0.1	Prompt Ξ^-	$0.13 \times \sigma_{pp \rightarrow \Xi^-} \ [\mu b]$	

Sensitivity on MDM/EDM

- For initial longitudinal polarisation $\mathbf{s}_0 = s_0 \hat{z}$
- Spin rotation after LHCb magnet (B field)

$$\mathbf{s} = \begin{cases} s_x = -s_0 \sin \Phi \\ s_y = -s_0 \frac{d\beta}{g} \sin \Phi \\ s_z = s_0 \cos \Phi \end{cases} \qquad \Phi \approx \frac{g\mu_B BL}{\beta \hbar c} \approx \frac{\pi}{4} \quad BL \approx 4 \text{ T m} \end{cases}$$

Spin analyser in Λ helicity frame dN

$$\frac{d\Omega}{d\Omega'} \propto 1 + \alpha \mathbf{s} \cdot \hat{\mathbf{k}} ,$$

CPT test at 10⁻⁴ via $\Lambda/\bar{\Lambda}$ MDM

EDM limit at 10⁻¹⁸ e cm with 50 fb⁻¹

erc 💭 QNP 2024

INFN

Summary

- Measurements of MDM/EDM of particles are sensitive to physics within and beyond the SM
- Demonstrated the possibility to measure Λ baryon MDM/EDM using the LHCb detector by reconstructing Λ decays after the dipole magnet. Extended the physics reach of LHCb <u>CERN-LHCb-DP-2022-001</u>
- First measurement at LHC of Λ baryon MDM/EDM is in progress, based on LHCb Run1-2 data (9 fb⁻¹) in $\Lambda_b^0 \to J/\psi \Lambda$ decays
- ▶ Interesting perspectives with LHCb upgrade detector for Run3 Run4 (50 fb⁻¹)
 - several orders of magnitude increase in yield reconstructing Λ from charm baryon decays
 - CPT test at 10-4 via $\Lambda/\bar{\Lambda}$ MDM
 - EDM limit at 10⁻¹⁸ e cm

Backup slides

The Λ baryon

- Quark composition uds
- Mass = 1115.683 ± 0.006 MeV
- $\tau = (2.617 \pm 0.010) \times 10^{-10} \text{ s}$
- Spin = $\frac{1}{2}$
- Λ baryon decays

•
$$\Lambda \rightarrow p\pi^-$$
 64%
• $\Lambda \rightarrow n\pi^0$ 36%

• $\Lambda \rightarrow p\pi^-$ decay parameter α recently measured by BES III [1]

$$\alpha = 0757 \pm 0.011 \pm 0.008$$

 in disagreement with previous world average (2018) [2]

$$\alpha_{\rm avg} = 0.642 \pm 0.013$$

[1] Nature Phys. 15 (2019) 631-634 [2] Particle Data Group, Review of particle physics, Phys. Rev. D98 (2018) 030001

Λ baryons from b and c hadron decays

At production $N_{\Lambda} \approx 10^6 / {\rm fb}^{-1}$ At production $N_{\Lambda} \approx 10^{11} / {\rm fb}^{-1}$

Not taken into account geometric acceptance, trigger and reconstruction efficiencies

Data driven momentum resolution

 From invariant mass and angular resolution to momentum resolution (simple formula for identical final particles with similar momentum, more complicated for general case)

$$\left(\frac{\delta p}{p}\right)^2 = 2\left(\frac{\sigma_m}{m}\right)^2 - 2\left(\frac{p\,\sigma_\theta}{m\,c\,\theta}\right)^2$$

erc 🖲 QNP 2024

