

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

イロン 不同 とくほど 不良 とう

1/17

CP Violation and Mixing in Charm at LHCb The 10th International Conference on Quarks and Nuclear Physics

Mateusz Kmieć

On behalf of the LHCb collaboration

9 July, 2024

Why are we interested in charm physics?

- 1. Precision measurements of CPV involving up-type quarks
- \Rightarrow studies complementary to K and B.
- 2. In Charm:

⇒ Expect very small CP asymmetry in the SM $\sim 10^{-3}$. Hints of NP if higher values are observed! ⇒ Mixing very slow therefore highly precise detector required.

3. Theoretical predictions are difficult since $m_c \approx \Lambda_{QCD}$ and $\alpha_s(m_c)$ is large.

Cabibbo-Kobayashi-Maskawa (CKM) Matrix and CPV

$$V_{\mathsf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3 \left(\rho - i\eta\right) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3 (1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

1. Complex phase $i\eta$ \Rightarrow the only known source of CPV in the SM

2. Relation relevant for D^0 meson decays and mixing:

$$\Rightarrow V_{ud}^* V_{cd} + V_{us}^* V_{cs} + V_{ub}^* V_{cb} = 0$$

3. Scale of CPV related to the openness of the unitary triangle $D^0: \beta_c \approx 0.03^\circ$ $B^0: \beta \approx 22^\circ$

$$\begin{array}{c|c} \beta_c \end{array} & V_{ud}^* V_{cd} \sim \lambda \\ \hline & V_{us}^* V_{cs} \sim \lambda \end{array} V_{ub}^* V_{cb} \sim \lambda^5$$

sine of Cabbibo angle $\lambda \approx 0.2$

イロン 不良 とくほど 不良とう ほ

3 / 17

All types of CPV

1. Direct (charm hadrons M):

 \circ CPV in decay $|A(M \to f)|^2 \neq |A(\overline{M} \to \overline{f})|^2$

2. Indirect (only for neutral mesons):

$$\circ \text{ CPV in mixing } \Gamma(D^0 \to \overline{D^0}) \neq \Gamma(\overline{D^0} \to D^0)$$

 \circ CPV in interference between mixing and decay $\Gamma(D^0 \to \overline{D^0} \to f_{CP}) \neq \Gamma(\overline{D^0} \to D^0 \to f_{CP})$

CKM Matrix and classification of decays

$$V_{\mathsf{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3 \left(\rho - i\eta\right) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 & A\lambda^2 \\ A\lambda^3 \left(1 - \rho - i\eta\right) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

- 1. $\lambda \approx$ 0.2 defined as sine of the Cabibbo angle.
- 2. Decay classification: λ^n in decay amplitudes:
 - \circ Cabibbo favoured (CF) \rightarrow n = 0,
 - \circ singly Cabibbo suppressed (SCS) \rightarrow n = 1,
 - \circ doubly Cabibbo supressed (DCS) \rightarrow n = 2.
- 3. SCS decays (both tree and penguin contributions) \Rightarrow small CPV present in the SM
- 4. CF and DCS decays (only one diagram contributes) \Rightarrow no CPV in the SM

LHCb Run1 (2011-2012) and Run2 (2015-2018)

° World's Largest sample of charm hadron decays:

$$\Rightarrow \sigma(pp \rightarrow c\bar{c}X) pprox 2.4mb$$
 @ $\sqrt{s} = 13$ TeV [JHEP 05 (2017) 074]

$$\Rightarrow$$
 Run1 \rightarrow 3fb⁻¹ @ \sqrt{s} =7-8 TeV

$$\Rightarrow$$
 Run2 \rightarrow 6fb $^{-1}$ @ \sqrt{s} =13 TeV

° Excellent particle identification, tracking and vertexing:

- \Rightarrow Momentum resolution $\Delta p/p = 0.5\%$ at low momentum.
- \Rightarrow Impact parameter resolution: $(15 + 29/p_T)\mu m$
- \Rightarrow Decay time resolution: 45fs $\sim 0.1 \tau_{D^0}$.

э

イロト 不同 とうほう 不同 とう

Experimental status - CPV in the decay

• In 2019 LHCb reported first observation of CPV in charm.

 $\Delta A_{CP} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-) = (-15.4 \pm 2.9) \cdot 10^{-4} (5.3\sigma) \text{ [PRL 122, 211803]}$

 \circ In 2023 evidence of CPV in $D^0 \to \pi^+\pi^-$ decay.

 $a^d_{\pi^+\pi^-} = (23.2 \pm 6.1) \cdot 10^{-4} (3.8\sigma) \text{ [PRL 131, 091802]}$

 \circ Interpretation within the SM still debated.

Outline

energy-test

- ° CPV in $D^0 \rightarrow K_S^0 K^{\pm} \pi^{\mp}$ with energy test [JHEP 03 (2024) 107]
- $^{\circ}$ CPV in $D^{0} \rightarrow \pi^{0}\pi^{-}\pi^{+}$ with energy test [JHEP 09 (2023) 129]

Outline

energy-test

- $^{\circ}$ CPV in $D^{0} \rightarrow K^{0}_{S} K^{\pm} \pi^{\mp}$ with energy test [JHEP 03 (2024) 107]
- $^\circ$ CPV in $D^0 \to \pi^0 \pi^- \pi^+$ with energy test [JHEP 09 (2023) 129]

time-dependent

- ° Mixing and CPV in $D^0 \rightarrow K^+\pi^-$ [LHCb-PAPER-2024-008]
- ° CPV in $D^0 \rightarrow \pi^0 \pi^- \pi^+$ decays [arXiv:2405.06556]

Search for CPV with multibody decays - experimental idea

1. Multibody decays:

- \Rightarrow Strong-phase differences varying across the phase-space
- \Rightarrow CP asymmetries may appear locally
- 2. Three body decay $M
 ightarrow m_1 m_2 m_3
 ightarrow$ visual representation Dalitz plot
- \Rightarrow m_{ij} is an invariant mass for m_i and m_j

- 3. We want to compare CP conjugated D^0 and $\overline{D^0}$ statistically.
- 4. Analysis tools for local CPV studies:
 - \Rightarrow Amplitude models (sys. uncertainties assessment difficult)
 - \Rightarrow Model independent methods \rightarrow Energy test (today)

イロト イポト イヨト イヨト

Energy test method (unbinned method) [JHEP 03 (2024) 107]

- 1. Energy test uses distance weight Ψ to compute T test statistic.
- 2. T quantifies average distance between pairs of events in the phase-space.

$$T = \frac{1}{2} \frac{1}{n(n-1)} \sum_{i \neq j}^{n} \psi_{ij} + \frac{1}{2} \frac{1}{\overline{n}(\overline{n}-1)} \sum_{i \neq j}^{\overline{n}} \psi_{ij} - \frac{1}{n\overline{n}} \sum_{i,j}^{n\overline{n}} \psi_{ij},$$

Average distance in the first sample. Average distance in the second sample. Average distance between the two samples. For example in the sample of $\overline{D^0}$. Distances between D^0 and $\overline{D^0}$ pairs.

- 3. Distance weight $\Psi_{ij} = e^{-d_{ij}^2/2\delta}$
- 4. Phase-space distance $= d_{ij}^2 = (s_{12,i} s_{12,j})^2 + (s_{13,i} s_{13,j})^2 + (s_{23,i} s_{23,j})^2.$

5. Phase-space parametrised with invariant masses of pairs of decay products: s_{12}, s_{13}, s_{23} .

6. For
$$D^0 \to K_s^0 K^{\pm} \pi^{\mp}$$
: $s_{12} = m^2 (K_s^0 K^{\pm})$, $s_{13} = m^2 (K^0 S \pi^{\mp})$, $s_{23} = m^2 (K^{\pm} \pi^{\mp})$.

 Test idea [JINST 13 (2018) P04011]

- \circ Permuted T-values (null hypothesis) \rightarrow randomly assign flavours to data
- \circ Measure p-value \Rightarrow fraction of T-values > Data T-value.
- No CPV \Rightarrow Data T-value \approx 0, p-value large
- Large CPV \Rightarrow Data T-value large and > 0, p-value ≈ 0

CPV in $D^0 \rightarrow K_S^0 K^{\pm} \pi^{\mp}$ Phase-space [JHEP 03 (2024) 107], dataset (2016-2018)

CPV in $D^0 \rightarrow \pi^0 \pi^- \pi^+$ Phase-space [JHEP 09 (2023) 129], dataset (2015-2018)

$$\circ D^{*+} \rightarrow D^0 \pi^+ \text{ strong decays, } \pi^+ \text{ tagging}$$

$$\circ \text{ Two } \pi^0 \text{ reconstruction modes:}$$

$$\frac{\text{resolved: low } p_T(\pi^0)$$

$$\frac{\text{merged: high } p_T(\pi^0)$$

• Control channel:

 $D^0 \rightarrow \mathsf{K}^- \pi^+ \pi^-$

Sample 4x larger than [PLB 740 (2015) 158]

Measurement of CPV with $D^0 \rightarrow K^+\pi^-$ [LHCb-PAPER-2024-008]

Signal yields for LHCb Run2: \sim 400M events in RS and \sim 1.6M in WS

For small theoretical mixing parameters $x_{12}, y_{12} \ll 1$:

$$R_{K\pi}^{\pm}(t) \approx R_{K\pi} \left(1 \pm A_{K\pi}\right) + R_{K\pi} \left(1 \pm A_{K\pi}\right) \left(c_{K\pi} \pm \Delta c_{K\pi}\right) \left(\frac{t}{\tau_{D^0}}\right) + \left(c_{K\pi}' \pm \Delta c_{K\pi}'\right) \left(\frac{t}{\tau_{D^0}}\right)^2$$

CPV observables: $A_{K\pi}$ (in decays), $\Delta c_{K\pi}$ (in interference), $\Delta c'_{K\pi}$ (in mixing). Mixing observables: $c_{K\pi}$, $c'_{K\pi}$

Measurement of CPV with $D^0 ightarrow K^+\pi^-$ [LHCb-PAPER-2024-008]

Search for time-dependent CPV in $D^0 \rightarrow \pi^+\pi^-\pi^0$ decays

(2012 and 2015-2018 dataset) [LHCb-PAPER-2024-003, arXiv:2405.06556]

First measurement of time-dependent CPV with π^0

$$A_{CP}(f_{CP}, t) = \frac{\Gamma_{D^0 \to f_{CP}}(t) - \Gamma_{\overline{D^0} \to f_{CP}}(t)}{\Gamma_{D^0 \to f_{CP}}(t) + \Gamma_{\overline{D^0} \to f_{CP}}(t)} \approx a_{f_{CP}}^{dir} + \bigotimes Y_{f_{CP}} \frac{t}{\tau_{D^0}}$$

$$\bigotimes (\Delta Y) = \eta_{f_{CP}} \bigotimes Y_{f_{CP}}$$
Universal across decay modes.
Related to mixing and CPV.

1. $A_{CP}(t) \Rightarrow$ 21 bins of t/ au_{D^0}

• Filled with $\Delta m = m(D^*) - m(D^0)$ signal yields.

- 2. ΔY fit validated in $D^0 \rightarrow K^+ \pi^- \pi^+$.
- 3. Account for CP-odd cont. $\Delta Y_{eff} = (2F_{+}^{\pi\pi\pi} 1)\Delta Y$:

$$\circ$$
 $F_{\pm}^{\pi\pi\pi} pprox 0.973 \pm 0.017$ [PLB. 747 (2015) 9–17]

Result: $\Delta Y = (-1.3 \pm 6.3 \pm 2.4) \cdot 10^{-4}$ WA: $\Delta Y = (0.9 \pm 1.1) \cdot 10^{-4}$ [PRD. 107,052008]

Summary and Future prospects

1. LHCb collected the largest sample of charm decays leading to new world-best measurements (2011-2018, Run1+Run2)

- 2. Four analysis were presented.
- 3. No new evidence of CPV \rightarrow results agree with the SM within 1σ .
- 4. In the analysis of $D^0 \rightarrow K^+\pi^-$ decays [LHCb-PAPER-2024-008]: $\rightarrow (3\sigma)$ evidence of quadratic mixing term.
- 5. Uncertainties dominated by statistical effects.
- \rightarrow improvement expected in the context of Run3.

BACKUP

< □ > < ⑦ > < 言 > < 言 > 言 の < ⊙ 17/17

