Recent results on quarkonium production

Zaida Conesa del Valle Laboratoire de Physique des 2 infinis Irène Joliot-Curie - IJCLab (CNRS/IN2P3, Université Paris-Saclay)

Disclaimer: only a selection of the results could be shown (time limit)

QNP, 10 July 2024, Barcelona (Spain)

Why heavy flavours?

- Heavy quarks are produced in initial hard scatterings with large $Q^2 \rightarrow$ calculable with pQCD.
- Large masses $m_b > m_c \gg \Lambda_{QCD} \rightarrow$ short formation time (<QGP lifetime) \rightarrow experience whole medium evolution
- Interactions with the medium don't change the flavour, but can modify the phase-space distribution. Thermal production rate in the QGP is expected to be 'small'.
 → destruction or creation in the medium is difficult

QNP 2024

Why heavy flavours?

- Heavy quarks are produced in initial hard scatterings with large $Q^2 \rightarrow$ calculable with pQCD.
- Large masses $m_b > m_c \gg \Lambda_{QCD} \rightarrow$ short formation time (<QGP lifetime) \rightarrow experience whole medium evolution
- Interactions with the medium don't change the flavour, but can modify the phase-space distribution. Thermal production rate in the QGP is expected to be 'small'.
 → destruction or creation in the medium is difficult

QNP 2024

Why heavy flavours?

- Heavy quarks are produced in initial hard scatterings with large $Q^2 \rightarrow$ calculable with pQCD.
- Large masses $m_b > m_c \gg \Lambda_{QCD} \rightarrow$ short formation time (<QGP lifetime) \rightarrow experience whole medium evolution
- Interactions with the medium don't change the flavour, but can modify the phase-space distribution. Thermal production rate in the QGP is expected to be 'small'.
 → destruction or creation in the medium is difficult

QNP 2024

vacuum like

• Quarkonia are bound states of heavy quarks

vacuum like

- Quarkonia are bound states of heavy quarks
- Color screening [JPG 32 R25 (2006)]: melting of quarkonium states is expected to follow a **sequential** pattern (QGP thermometer?)

vacuum like suppression / dissociation

- Quarkonia are bound states of heavy quarks
- Color screening [JPG 32 R25 (2006)]: melting of quarkonium states is expected to follow a sequential pattern (QGP thermometer?)
- Regeneration: if the initial number of QQ pairs is large and heavy quarks thermalise in the QGP, quarkonia can form at the phase boundary by statistical hadronization
 [PLB 490 (2000) 196] or during the
 QGP evolution [PRC 63 (2001) 054905]
 by heavy quark recombination

regeneration

- Quarkonia are bound states of heavy quarks
- Color screening [JPG 32 R25 (2006)]: melting of quarkonium states is expected to follow a sequential pattern (QGP thermometer?)
- Regeneration: if the initial number of QQ pairs is large and heavy quarks thermalise in the QGP, quarkonia can form at the phase boundary by statistical hadronization [PLB 490 (2000) 196] or during the QGP evolution [PRC 63 (2001) 054905] by heavy quark recombination
- Regeneration is a competing phenomena w.r.t. quarkonium suppression, possibly compensate or even exceed it

regeneration

- Quarkonia are bound states of heavy quarks
- Color screening [JPG 32 R25 (2006)]: melting of quarkonium states is expected to follow a sequential pattern (QGP thermometer?)
- Regeneration: if the initial number of QQ pairs is large and heavy quarks thermalise in the QGP, quarkonia can form at the phase boundary by statistical hadronization
 [PLB 490 (2000) 196] or during the
 QGP evolution [PRC 63 (2001) 054905] by heavy quark recombination
- Regeneration is a competing phenomena w.r.t. quarkonium suppression, possibly compensate or even exceed it
- Modern dynamical picture [Phys.Rept. 858 (2020) 1-117]

regeneration

Energy and system size dependence of $J/\psi R_{AA}$

- J// ψ suppression (R_{AA} < 1) in central heavy-ion collisions observed at RHIC and LHC energies
- STAR: No strong collision system size dependence of the $J/\psi R_{AA}$
- Suppression at $\sqrt{s_{NN}} = 200$ GeV in AuAu beyond expectation from CNM

• Strong rise of the J/ ψ R_{AA} from RHIC to LHC energies \rightarrow evidence for **charmonium regeneration** at the LHC

- J/ ψ production in central PbPb collisions described by an **interplay between** dissociation, regeneration and energy loss
- Stronger regeneration at midrapidity w.r.t forward rapidity

$J/\psi R_{AA}$ at the LHC

- at $\sqrt{s_{NN}} = 68.5 \text{ GeV}$

 $J/\psi/D^0$ yield ratio

• $J/\psi/D^0$ ratio interesting to further constrain models (similar initial state). Increasing ratio with centrality well described by SHMc at $\sqrt{s_{NN}} = 5.02$ TeV (ratio related to charm fugacity) • Fixed Target@LHC: No evidence of anomalous J/ψ suppression in central PbNe collisions

- Golden probe at low p_T to disentangle among regeneration models
- Larger suppression of $\psi(2S)$ w.r.t. J/ ψ in a wide p_T interval
- Transport model reproduces better the $\psi(2S) R_{AA}$ in central PbPb events
- Suggesting sequential suppression of charmonia

ALICE Coll., PRL 132 (2024) 042301; ALICE Coll., JHEP 2002 (2020) 041; CMS Coll., EPJC 78 (2018) 509; NA50 Coll., EPJC 49 (2007) 559

QNP 2024

$Y(nS) R_{AA}$

QNP 2024

$Y(nS)R_{AA}$

- Observation of $\Upsilon(3S)$ by CMS in PbPb collisions
- Sequential suppression of Y(nS) states at the LHC energies $\mathsf{R}_{\mathsf{A}\mathsf{A}}\left(\Upsilon(3\mathsf{S})\right) \leq \mathsf{R}_{\mathsf{A}\mathsf{A}}\left(\Upsilon(2\mathsf{S})\right) < \mathsf{R}_{\mathsf{A}\mathsf{A}}\left(\Upsilon(1\mathsf{S})\right)$

QNP 2024

$Y(nS)R_{AA}$

- Observation of $\Upsilon(3S)$ by CMS in PbPb collisions
- Sequential suppression of Y(nS) states at the LHC energies $R_{AA}(\Upsilon(3S)) \leq R_{AA}(\Upsilon(2S)) < R_{AA}(\Upsilon(1S))$
- Similar Y(1S) suppression at RHIC(▲) and at the LHC(•): favouring a negligible melting of direct Y(1S) production. Suppression of excited states only + CNM effects.
- Hint that $\Upsilon(2S)$ might be less suppressed at RHIC in peripheral events than at the LHC?

Picturing the PbPb v₂ results in a nutshell

- Positive v₂ of heavy flavours in mid-central PbPb collisions
 - → Evidence of strong collective effects
- Exhibit a mass hierarchy at low and intermediate *p*_T (≈8 GeV/c)
 *v*₂ (J/ψ) < *v*₂ (D) < *v*₂ (π)
 similar curve at high *p*_T.
 - Low/intermediate p_T:
 later thermalization of charm quarks (vs. light quarks) and/or
 recombination of charm quarks
 - High *p*_T :
 path-length dependent energy loss

ALICE, J<u>HEP 09 (2018) 006</u> CMS, <u>Phys. Rev. Lett. 120, 202301 (2018)</u> ALICE, P<u>hys. Lett. B 813 (2021) 136054</u> ALICE, <u>JHEP 10 (2020) 141</u>

 $v_2\, of\, J/\psi$ at RHIC

• Significant J/ ψ v₂ at low p_T and the LHC energies \rightarrow Sign of **charmonium regeneration**

 v_2 of J/ ψ at RHIC

- Significant J/ ψ v₂ at low p_T and the LHC energies \rightarrow Sign of **charmonium regeneration**
- Hint for $\psi(2S) v_2$ larger than $J/\psi v_2$ for $p_T > 6.5$ GeV/c?

arger contribution from recombination for $\psi(2S)$? Interesting to extend with Run 3 and down to lower p_T

- Significant J/ ψ v₂ at low p_T and the LHC energies \rightarrow Sign of **charmonium regeneration**
- Hint for $\psi(2S) v_2$ larger than $J/\psi v_2$ for $p_T > 6.5$ GeV/c?
- Y(1S) v_2 compatible with zero \rightarrow no evidence for regeneration within uncertainties Would be interesting to look at v₂ of excited states if doable

arger contribution from recombination for $\psi(2S)$? Interesting to extend with Run 3 and down to lower p_T

Quarkonium collectivity in smaller systems

- Significant J/ ψ v₂ at intermediate p_T in pPb collisions at high multiplicity, not explained by transport models (negligible path-length dependence and regeneration).
- No hint of collective behaviour observed for J/ψ in pp data at high multiplicity.
- Possibly a common mechanism at the origin of collective behaviour in both pPb and PbPb?

CMS Coll., Phys. Lett. B 850 (2024) 138518 CMS Coll., Phys. Lett. B 791 (2019) 172 X. Du et al, High Energy Phys. (2019) 2019:15 ALICE, JHEP 10 (2020) 141 (Pb-Pb) ALICE, PLB 780 (2018) 7-20 (p-Pb)

• $\Upsilon(1S)$ v₂ consistent with zero \rightarrow No significant dependence of b-quark modification on in-medium path length.

• Simplified picture...

 $\frac{\mathrm{d}N_{\mathrm{i}}/\mathrm{d}y}{\langle\mathrm{d}N_{\mathrm{i}}/\mathrm{d}y\rangle}$

 $\frac{\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta}{\langle\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta\rangle}$

• Simplified picture...

 $\frac{\mathrm{d}N_{\mathrm{i}}/\mathrm{d}y}{\langle\mathrm{d}N_{\mathrm{i}}/\mathrm{d}y\rangle}$

Production independent of underlying event

$$\frac{\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta}{\langle\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta\rangle}$$

• Simplified picture...

 $\frac{\mathrm{d}N_{\mathrm{i}}/\mathrm{d}y}{\langle\mathrm{d}N_{\mathrm{i}}/\mathrm{d}y\rangle}$

QNP 2024

Hard process scales with the mean multiplicity (naive MPI scenario)

Production independent of underlying event

$$\frac{\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta}{\langle\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta\rangle}$$

• Simplified picture...

$$\rightarrow \frac{\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta}{\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta \rangle}$$

• Simplified picture...

$$\rightarrow \frac{\mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta}{\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta \rangle}$$

Charm yields vs. charged-particle multiplicity in pp

- **Rapid increase with charged-particle** multiplicity at mid-rapidity (D, D_s, J/Ψ , non-prompt J/ Ψ , c/b \rightarrow I)
 - suggesting common origin,
 - trend described by models including some 'sort of' multiple-parton interactions
 - all models show a departure from linearity;
 - described by initial state model with ulletmodified gluon distribution or percolation models;
 - PYTHIA and EPOS do not reproduce ulletquantitatively the trend.

ALICE, PLB 810 (2020) 135758

Charm yields vs. charged-particle multiplicity in pp

- **Rapid increase with charged-particle** multiplicity at mid-rapidity (D, D_s, J/Ψ , non-prompt J/ Ψ , c/b \rightarrow I)
 - suggesting common origin,
 - trend described by models including some 'sort of' multiple-parton interactions
 - all models show a departure from \bullet linearity;
 - described by initial state model with ulletmodified gluon distribution or percolation models;
 - PYTHIA and EPOS do not reproduce \bullet quantitatively the trend.

ALICE, PLB 810 (2020) 135758

- Rapid increase with charged-particle multiplicity at midrapidity (D, D_s, J/ Ψ , non-prompt J/ Ψ)
 - suggesting common origin,
 - trend described by models including some 'sort of' multiple-parton interactions
- But J/Ψ and Y results at forward-y suggest a slower **increase** (than midrapidity ones)
 - hadronisation? D-meson measurements disfavour this hypothesis
 - fragmentation? Study particle species (kinematic dep.), also particle production in jets / isolated.
 - associated production? underlying event? Multi-differential studies: yields at different y, vs multiplicity at different y, in sphericity intervals or vs angle (event classifier).
 - final state effects?

Excited-to-ground state ratios: possible final state effects?

- lacksquarein the ratio, and the higher mass states are characterized by a lower binding energy.
- $\psi(2S)/J/\psi$ ratio as a function of multiplicity in pp collisions:
 - inclusive ratio consistent with unity,
 - decreasing trend of the prompt component, consistent with model calculations.

Excited-to-ground state ratios provide information on final state effects, as most of the initial state effects cancel ALICE, JHEP 06 (2023) 147

LHCb, JHEP 05 (2024) 243 CMS, <u>CMS-PAS-HIN-24-001</u>

Excited-to-ground state ratios: possible final state effects?

- The Y(nS)/Y(1S) ratios are multiplicity independent for jet-like events.

Decrease of Y(nS)/Y(1S) ratios as a function of multiplicity, consistently across system size.

CMS, JHEP 04 (2014) 103 CMS, JHEP 11 (2020) 001

- Effective cross section results:

 - by parton correlations.

Z. Conesa del Valle

- Effective cross section results:

 - by parton correlations.

Z. Conesa del Valle

- Effective cross section results:

 - by parton correlations.

- Effective cross section results:

 - by parton correlations.

Double parton scattering in pA/AA collisions

Double parton scattering in pA/AA collisions

Three contributions to the DPS cross section in AA collisions. \bullet Alternative to extract the effective cross section.

Double parton scattering in pA/AA collisions

- Three contributions to the DPS cross section in AA collisions. Alternative to extract the effective cross section.
- **First observation of DPS in pPb** collisions by LHCb!
- DPS contribution enhanced in pPb by a factor of 3 with respect to pp.
- Interpretation challenged by the dominant contribution of scatterings among partons from different nucleons, in addition to the genuine DPS, where interactions take place among partons within a nucleon.

Double J/ ψ production in pPb collisions

First observation of double J/ψ in pPb collisions by CMS!

within a nucleon.

Interpretation challenged by the dominant contribution of scatterings among partons from different nucleons, in addition to the genuine DPS, where interactions take place among partons

Take home message

- Sequential dissociation of charmonia and bottomonia in heavy-ion collisions.
- Positive v_2 of J/ ψ in PbPb and pPb collisions at high multiplicity.
- Interpreted as interplay of dissociation, regeneration and energy loss.
- The origin of the collective motion in small systems is still under debate. Important role of initial state effects and/or influence of final state effects?
- Non-negligible influence of multiparton interactions.
- Crucial to better quantify yields and collective motion of charmonia and bottomonia excited states across collision systems!

Big thank you to the organisers!

Special thanks to E. Ferreiro, L. Massacrier for fruitful discussions and suggestions

Additional material

• Heavy flavour v₂ follows a smooth evolution with charged-particle multiplicity

- non-zero values for charm in pp and pPb collisions
- important role of initial state effects and/or influence of final state effects?
- Crucial to quantify beauty v_2 in small systems

Zooming on v₂ across system size

STAR, PLB 844 (2023) 138071 ATLAS, pp, PRL 124 (2020) 082301 ATLAS, PbPb, PLB 807 (2020) 135595 CMS, pPb, prompt D⁰, <u>PRL 121 (2018) 8, 082301</u> CMS, pPb, non-prompt D⁰, <u>PRL 813 (2021) 136036</u> ALICE, pPb, <u>JHEP 2019 (2019) 92</u> LHCb, D⁰, <u>arXiv:2205.03936</u>

Multiplicity

Associated production and multiparton interactions in pp

- Production of multiple (two, three,...) heavy flavour particles, be it D⁰, J/ ψ , Y,...
- Single parton scattering: can be treated by pQCD
- **n-parton scattering** (double, triple,...): need to reformulate quantum field theories
 - \bullet
 - Role of partonic correlations in the wave functions (x, p, flavour, spin, colour,...). \bullet
 - Constrain heavy-flavour modelling. \bullet
 - Background for other studies (e.g. BSM resonance decays of multiple heavy particles). \bullet

Generalised PDFs (x, Q_2 , b) of the proton, including the unknown energy evolution of the proton transverse profile.

In the **collinear factorisation approach**, assuming two parton GPD can be decomposed in longitudinal and transverse components, and neglecting correlations in the proton:

$$\sigma_{1,2}^{\text{DPS}} = \frac{m}{2\,\sigma_{\text{eff}}} \,\sigma_1^{\text{SPS}}\,\sigma_2^{\text{SPS}}$$

m=1 if 1=2, and 2 otherwise.

The **effective cross section** is a (universal) constant related to the transverse overlap function between the partons of the proton.

- **Double particle production exploited to study DPS**: double quarkonium $(J/\psi+J/\psi, J/\psi+\Upsilon,...)$, electroweak boson + quarkonium, double charm, charm+quarkonium, multi-jets, γ +n-3-jet, W+2-jet,...
- Effective cross section results:
 - $J/\psi+C$ in agreement with multi-jet and double W, ullet
 - double quarkonium or quarkonium+W/Z are a bit lower. \bullet
 - Possibly originated from the parton flavour (gluon vs. light-quark) probed \bullet and/or by parton correlations.
- Note: experimentally challenging to separate SPS-DPS (go to large $\Delta \eta$?)

In the **collinear factorisation approach**, assuming two parton GPD can be decomposed in longitudinal and transverse components, and neglecting correlations in the proton:

$$\sigma_{1,2}^{\text{DPS}} = \frac{m}{2\,\sigma_{\text{eff}}} \,\sigma_1^{\text{SPS}}\,\sigma_2^{\text{SPS}}$$

m=1 if 1=2, and 2 otherwise.

The **effective cross section** is a (universal) constant related to the transverse overlap function between the partons of the proton.

- **Double particle production exploited to study DPS**: double quarkonium $(J/\psi+J/\psi, J/\psi+\Upsilon,...)$, electroweak boson + quarkonium, double charm, charm+quarkonium, multi-jets, γ +n-3-jet, W+2-jet,...
- Effective cross section results:
 - $J/\psi+C$ in agreement with multi-jet and double W, lacksquare
 - double quarkonium or quarkonium+W/Z are a bit lower. lacksquare
 - Possibly originated from the parton flavour (gluon vs. light-quark) probed lacksquareand/or by parton correlations.
- Note: experimentally challenging to separate SPS-DPS (go to large $\Delta \eta$?)

In the **collinear factorisation approach**, assuming two parton GPD can be decomposed in longitudinal and transverse components, and neglecting correlations in the proton:

$$\sigma_{1,2}^{\text{DPS}} = \frac{m}{2\,\sigma_{\text{eff}}} \,\sigma_1^{\text{SPS}}\,\sigma_2^{\text{SPS}}$$

m=1 if 1=2, and 2 otherwise.

The **effective cross section** is a (universal) constant related to the transverse overlap function between the partons of the proton.

- **Double particle production exploited to study DPS**: double quarkonium $(J/\psi+J/\psi, J/\psi+\Upsilon,...)$, electroweak boson + quarkonium, double charm, charm+quarkonium, multi-jets, γ +n-3-jet, W+2-jet,...
- Effective cross section results:
 - $J/\psi+C$ in agreement with multi-jet and double W, ullet
 - double quarkonium or quarkonium+W/Z are a bit lower. \bullet
 - Possibly originated from the parton flavour (gluon vs. light-quark) probed lacksquareand/or by parton correlations.
- Note: experimentally challenging to separate SPS-DPS (go to large $\Delta \eta$?)

In the **collinear factorisation approach**, assuming two parton GPD can be decomposed in longitudinal and transverse components, and neglecting correlations in the proton:

$$\sigma_{1,2}^{\text{DPS}} = \frac{m}{2\,\sigma_{\text{eff}}} \,\sigma_1^{\text{SPS}}\,\sigma_2^{\text{SPS}}$$

m=1 if 1=2, and 2 otherwise.

The **effective cross section** is a (universal) constant related to the transverse overlap function between the partons of the proton.

- **Double particle production exploited to study DPS**: double quarkonium $(J/\psi+J/\psi, J/\psi+\Upsilon,...)$, electroweak boson + quarkonium, double charm, charm+quarkonium, multi-jets, γ +n-3-jet, W+2-jet,...
- Effective cross section results:
 - $J/\psi+C$ in agreement with multi-jet and double W, ullet
 - double quarkonium or quarkonium+W/Z are a bit lower. \bullet
 - Possibly originated from the parton flavour (gluon vs. light-quark) probed ulletand/or by parton correlations.
- Note: experimentally challenging to separate SPS-DPS (go to large $\Delta \eta$?)

In the **collinear factorisation approach**, assuming two parton GPD can be decomposed in longitudinal and transverse components, and neglecting correlations in the proton:

$$\sigma_{1,2}^{\text{DPS}} = \frac{m}{2\,\sigma_{\text{eff}}} \,\sigma_1^{\text{SPS}}\,\sigma_2^{\text{SPS}}$$

m=1 if 1=2, and 2 otherwise.

The **effective cross section** is a (universal) constant related to the transverse overlap function between the partons of the proton.

- **Double particle production exploited to study DPS**: double quarkonium $(J/\psi+J/\psi, J/\psi+\Upsilon,...)$, electroweak boson + quarkonium, double charm, charm+quarkonium, multi-jets, γ +n-3-jet, W+2-jet,...
- Effective cross section results:
 - $J/\psi+C$ in agreement with multi-jet and double W, ullet
 - double quarkonium or quarkonium+W/Z are a bit lower. \bullet
 - Possibly originated from the parton flavour (gluon vs. light-quark) probed ulletand/or by parton correlations.
- Note: experimentally challenging to separate SPS-DPS (go to large $\Delta \eta$?)

Quarkonium yields vs. charged-particle multiplicity in pp

- Underlying event or associated particle influence?
- Faster than linear increase when overlap in rapidity between Nch and J/ψ
- Reduced increase with multiplicity for large Δ y gap between Nch and J/ ψ

