Tensor and vector exchange contributions to $K\bar{K} \to K\bar{K}, D\bar{D} \to D\bar{D}$ and $\pi^+\pi^- \to \pi^+\pi^-$ reactions

Luciano Melo Abreu

Universidade Federal da Bahia (Brazil)

(With Jing Song, Pedro Brandão and Eulogio Oset, Eur.Phys.J.A **60**, 76 (2024))

> QNP2024 Barcelona, Spain

Motivation

- $\bullet\,$ Meson-meson interactions \rightarrow continues as a subject of intense debate
- Several mesons should not be interpreted as bound states obtained from effective quark models, but as dynamically generated
- A large number of meson states are broad resonances

Examples:

- $\sigma/f_0(500)$ and $\kappa/K_0^*(700) \rightarrow$ from $\pi\pi$ and $K\pi$ interactions
- $f_0(980)$ and $a_0(980) \rightarrow$ from unitary coupled-channel $(\pi \pi, K\bar{K}, \eta \eta$ for I = 0 and $\pi \eta, K\bar{K}$ for I = 1)
- Tensor sector: $f_2(1270) \rightarrow$ from VV interaction ($\rho\rho$: dominant)

Local hidden gauge formalism: *PPV*, *VVV* and *VVVV* structures (Molina, Nicmorus and Oset, PRD 78, 114018 (2008); Geng and Oset, PRD 79, 074009 (2009))

1

• Controversies on the nature of $f_2(1270)$: see EPJA **60**, 76 (2024)

 $\bullet\,$ Relevant point: PPV vertex from the local hidden gauge formalism

Tree-level pseudoscalar meson–pseudoscalar meson $(PP \rightarrow PP)$ interactions with an intermediate vector-exchange

 \downarrow

 $\bullet~\mbox{Relevant}$ point: PPV vertex from the local hidden gauge formalism

Tree-level pseudoscalar meson–pseudoscalar meson $(PP \rightarrow PP)$ interactions with an intermediate vector-exchange

 $P = (K, \pi, D); V = \rho$

Interesting questions:

What about the contribution coming from tensor-exchange mechanism for the scattering matrix? Is it relevant with respect to the vector one?

3/11

- Ecker and Zauner, Eur. Phys. J. C **52**, 315-323 (2007): Tensor exchange contribution evaluated using ChPT₂
- $f_2(1270)$ as a $q \bar{q}$ state
- Lowest amplitudes:

$$T^{(V)} = \frac{-7}{2f_{\pi}^2}m_{\pi}^2; \quad T^{(T)} = -\frac{40}{f_{\pi}^4}L_3^{(T)}m_{\pi}^4;$$

• Ratio $R_{\pi\pi} = \frac{T^{(T)}}{T^{(V)}}$ to $\pi\pi$ scattering $(L_3^{(T)} = 0.16 \times 10^{-3})$:

$$R_{\pi\pi} = \frac{80}{7f_{\pi}^2} L_3^{(T)} m_{\pi}^2 = 4 \times 10^{-3}$$

• Also: $R_{K\bar{K}}=7\times 10^{-2}$

- Ecker and Zauner, Eur. Phys. J. C **52**, 315-323 (2007): Tensor exchange contribution evaluated using ChPT₂
- $f_2(1270)$ as a qar q state
- Lowest amplitudes:

$$T^{(V)} = \frac{-7}{2f_{\pi}^2}m_{\pi}^2; \ \ T^{(T)} = -\frac{40}{f_{\pi}^4}L_3^{(T)}m_{\pi}^4;$$

• Ratio $R_{\pi\pi} = \frac{T^{(T)}}{T^{(V)}}$ to $\pi\pi$ scattering $(L_3^{(T)} = 0.16 \times 10^{-3})$:

$$R_{\pi\pi} = \frac{80}{7f_{\pi}^2} L_3^{(T)} m_{\pi}^2 = 4 \times 10^{-3}$$

 $\bullet~{\rm Also:}~R_{K\bar{K}}=7\times 10^{-2}$

Our aim:

- Evaluation of the tensor and vector (ρ) contribution mechanisms to the elastic reactions $\pi^+\pi^-$, K^+K^- and D^+D^- , taking $f_2(1270)$ dynamically generated
- Comparison: light-heavy ($D\bar{D}$ scattering) and the light sectors

Formalism: elastic reactions $\pi^+\pi^-$, K^+K^- and D^+D^-

Tensor contribution mechanism:

 ρ mesons, which generates two-loop amplitudes

э

• $f_2(1270)$: exchange contribution $\rightarrow S$ -wave I = 0, J = 2 channel of the $\rho\rho$ interaction

$$D(k) = \frac{g_{f_2}^2}{k^2 - m_{f_2}^2} P^{(2)},$$

 $g_{f_2} = 10551$ MeV (Molina et al. PRD 78, 114018 (2008)); 10889 MeV (Geng and Oset, PRD 79, 074009 (2009))

• Loop contributions: Upper and lower vertices can be factorized

PPV vertex [R. Molina, D. Nicmorus, and E. Oset, Phys. Rev. D 78, 114018 (2008)]:

$$\mathcal{L}_{PPV} = -ig\langle [P, \partial_{\mu}P]V^{\mu}\rangle,$$

 $P,V:\,q\bar{q}$ matrices in SU $_{F}(4)$ in terms of pseudoscalar or vector mesons; $g=m_{V}/(2f_{\pi})~(m_{V}=800$ MeV, $f_{\pi}=93$ MeV); Loop:

$$\begin{split} -iV_{\mu\nu} &= -C \frac{1}{\sqrt{6}} g_{f_2} g^2 \int \frac{d^4q}{(2\pi)^4} \left(\frac{1}{q^2 - m_\rho^2 + i\epsilon}\right)^2 \frac{1}{(p_1 + q)^2 - m_P^2 + i\epsilon} \\ &\times \left[-(2p_1 + q)_\mu + \frac{1}{m_\rho^2} (2p_1 + q) \cdot qq_\mu \right] \left[-(2p_1 + q)_\nu + \frac{1}{m_\rho^2} (2p_1 + q) \cdot qq_\nu \right], \quad (2p_1 + q)_\nu + \frac{1}{m_\rho^2} (2p_1 + q) \cdot qq_\nu], \quad (2p_1 + q)_\nu + \frac{1}{m_\rho^2} (2p_1 + q) \cdot qq_\nu]$$

6/11

- Cauchy integration over q^0 (poles: $q^0 = \pm \omega_{
 ho} = \pm \sqrt{\vec{q}^2 + m_{
 ho}^2}$)
- At the threshold of the pseudoscalar mesons:
 - $V_{0j}, V_{i0} \propto p_i = 0$
 - $V_{ij} = a\delta_{ij} + bp_i p_j = 0$

(b does not contribute as $p_i = 0$; a vanishes when combined with $P^{(2)}$) • Thus, only V_{00} contributes:

$$-iV_{00} = C'_{j}\frac{1}{\sqrt{6}}g_{f_{2}}g^{2}i\frac{\partial}{\partial m_{\rho}^{2}}\int \frac{d^{3}q}{(2\pi)^{3}}\frac{1}{2\omega_{\rho}\omega_{P}}\frac{\omega_{\rho}+\omega_{P}}{E_{1}^{2}-(\omega_{\rho}+\omega_{P})^{2}+i\epsilon}$$
$$\times \left(\frac{2E_{1}\vec{q}^{2}}{m_{\rho}^{2}}\right)^{2} \Theta(q_{\max}-|\vec{q}|)\left(\frac{\Lambda^{2}}{\Lambda^{2}+\vec{q}^{2}}\right)^{2}$$

$$(C'_j = 3/2 \text{ for } j = K, D; C'_j = 4 \text{ for } j = \pi)$$

Combining all ingredients

$$-iT^{(T)}(k) = \frac{i}{k^2 - m_{f_2}^2} \left\{ \frac{1}{2} \left[(-i)V_{00}(-i)V_{00} + (-i)V_{00}(-i)V_{00} \right] - \frac{1}{3} (-i)V_{00}(-i)V_{00} \right\}$$

• At threshold:

$$T^{(T)}(0) = -\frac{2}{3m_{f_2}^2} [V_{00}]^2.$$

• $T^{(T)}(0) \propto m_i^4, g^4, f^{-4}$

• Vector-exchange mechanism: *PPV* vertex gives the amplitude

$$-iT^{(V)}(k) = \frac{(-ig)}{\sqrt{2}}(2p_1+k)^{\mu}\frac{i}{k^2-m_{\rho}^2}\left(-g_{\mu\nu}+\frac{k_{\mu}k_{\nu}}{m_{\rho}^2}\right)\frac{(ig)}{\sqrt{2}}(2p_1-k)^{\nu}$$

• At threshold:

$$T^{(V)}(0) = \begin{cases} -\frac{2g^2}{m_{\rho}^2} E_1^2 \text{ (for } K, D); \\ -\frac{8g^2}{m_{\rho}^2} E_1^2 \text{ (for } \pi). \end{cases}$$

 Next: evaluation of the ratio between the contributions coming from the tensor-exchange mechanism and the one with exchange of a vector meson:

$$R = \left| \frac{T^{(T)}(0)}{T^{(V)}(0)} \right|$$

Results for the evaluation of \boldsymbol{R}

$q_{\max}[MeV]$	$\pi^+\pi^- \to \pi^+\pi^-$	$K^+K^- \to K^+K^-$	$D^+D^- \rightarrow D^+D^-$
10551 (Molina (2008)) 600 700 800 850 900	8.38×10^{-5}	2.960×10^{-4}	4.79×10^{-4}
			2.47×10^{-3}
			9.35×10^{-3}
	1.53×10^{-3}	7.00×10^{-3}	1.66×10^{-2}
	2.34×10^{-3}	1.11×10^{-2}	2.81×10^{-2}
10889 (Geng (2009)) 600 700 800 850 900	8.93×10^{-5}	3.15×10^{-4}	5.10×10^{-4}
	3.43×10^{-4}	1.38×10^{-3}	2.63×10^{-3}
	1.02×10^{-3}	4.49×10^{-3}	9.96×10^{-3}
	1.63×10^{-3}	7.45×10^{-3}	1.77×10^{-2}
	2.49×10^{-3}	1.18×10^{-2}	2.99×10^{-2}
	600 700 800 850 900 600 700 800 850	$\begin{array}{c} 600 & 8.38 \times 10^{-5} \\ 700 & 3.22 \times 10^{-4} \\ 800 & 9.56 \times 10^{-4} \\ 850 & 1.53 \times 10^{-3} \\ 900 & 2.34 \times 10^{-3} \\ \end{array}$ $\begin{array}{c} 600 & 8.93 \times 10^{-5} \\ 700 & 3.43 \times 10^{-4} \\ 800 & 1.02 \times 10^{-3} \\ 850 & 1.63 \times 10^{-3} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

- g_{f_2} from Geng-Oset (2009) is about 3% bigger than the one from Molina et al. (2008): R greater than the former one by 6 7%
- R: increases as q_{\max} increases
- Most importantly: $R \sim 10^{-2} 10^{-5}$
 - $m_{f_2}^{-2}/m_{\rho}^{-2} \sim 0.4$
 - Small magnitude: mainly due to the vertex contribution V_{00}

Comparison to Ecker et al. (2007): we take $g_{f_2}=10551~{\rm MeV}$ and $q_{\rm max}=850~{\rm MeV}$

- Our case: $R_{\pi\pi} \approx \frac{1}{2.6} R_{\pi\pi}^{(\text{Ecker})}$
 - (Our picture produces, with the small fine tuning, a good reproduction of $f_2(1270) \to \pi\pi)$
- Our case: $\frac{R_{K\bar{K}}}{R_{\pi\pi}} \approx 4.6$, while $\frac{R_{K\bar{K}}^{(\text{Ecker})}}{R_{\pi\pi}^{(\text{Ecker})}} \sim 17$
 - SU(3) symmetry: $\frac{R_{K\bar{K}}}{R_{\pi\pi}} \approx m_K^2/m_{\pi}^2 \approx 13$ (not far from 17)
 - Present case: loops employed to dynamically generate the $f_2(1270)$

$$\downarrow \\ [(\frac{C_K}{C_{\pi}})^2 \frac{1}{4}]^{-1} = [(\frac{8}{3})^2 \frac{1}{4}]^{-1} = 0.56 \to 13 \times 0.56 \sim 7.3$$

(not far from 4.6; extra reduction: from V_{00} [w_i in the denominator])

- Tensor exchange with the $f_2(1270)$ dynamically generated: visible effect, reducing what one finds with the SU(3) symmetry
- $R_{D\bar{D}} \sim 1 2\%$ but still small (large mass of the D meson in V_{00} stabilizes R)

Conclusions

- Analysis of the tensor and vector-contribution mechanisms to the elastic reactions involving $\pi^+\pi^-$, K^+K^- and D^+D^-
- Tensor-exchange contribution: $f_2(1270)$ is dynamically generated from the $\rho\rho$ interaction with the use of a pole approximation (two-loop calculation with triangle loops factorized)
- Tensor-exchange mechanisms: small when compared with those from the vector-exchange processes
- $\pi^+\pi^-$ scattering: results are more ressemblant with SU(3) picture assumed in Ecker et al. (2007)
- Our picture: tensor contribution for $K\bar{K}$ is stabilized: only about 4.6 times bigger than the one of $\pi^+\pi^-$ (SU(3): 17 times larger)
- $\bullet\,$ Our picture: ratio of tensor to vector exchange for the case of D mesons of the order of 1-2%

ヘロト 人間ト 人間ト 人間ト