Tensor and vector exchange contributions to $K \bar{K} \rightarrow K \bar{K}, D \bar{D} \rightarrow D \bar{D}$ and $\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$reactions

Luciano Melo Abreu
Universidade Federal da Bahia (Brazil)

(With Jing Song, Pedro Brandão and Eulogio Oset, Eur.Phys.J.A 60, 76 (2024))

QNP2024
Barcelona, Spain

Motivation

- Meson-meson interactions \rightarrow continues as a subject of intense debate
- Several mesons should not be interpreted as bound states obtained from effective quark models, but as dynamically generated
- A large number of meson states are broad resonances

Examples:

- $\sigma / f_{0}(500)$ and $\kappa / K_{0}^{*}(700) \rightarrow$ from $\pi \pi$ and $K \pi$ interactions
- $f_{0}(980)$ and $a_{0}(980) \rightarrow$ from unitary coupled-channel ($\pi \pi, K \bar{K}, \eta \eta$ for $I=0$ and $\pi \eta, K \bar{K}$ for $I=1$)
- Tensor sector: $f_{2}(1270) \rightarrow$ from $V V$ interaction ($\rho \rho$: dominant) \Downarrow
Local hidden gauge formalism: $P P V, V V V$ and $V V V V$ structures (Molina, Nicmorus and Oset, PRD 78, 114018 (2008); Geng and Oset, PRD 79, 074009 (2009))
- Controversies on the nature of $f_{2}(1270)$: see EPJA 60, 76 (2024)
- Relevant point: $P P V$ vertex from the local hidden gauge formalism
\Downarrow
Tree-level pseudoscalar meson-pseudoscalar meson $(P P \rightarrow P P)$ interactions with an intermediate vector-exchange

- Relevant point: $P P V$ vertex from the local hidden gauge formalism

\Downarrow

Tree-level pseudoscalar meson-pseudoscalar meson $(P P \rightarrow P P)$ interactions with an intermediate vector-exchange

Interesting questions:
What about the contribution coming from tensor-exchange mechanism for the scattering matrix? Is it relevant with respect to the vector one?
$3 / 11$

- Ecker and Zauner, Eur. Phys. J. C 52, 315-323 (2007): Tensor exchange contribution evaluated using ChPT_{2}
- $f_{2}(1270)$ as a $q \bar{q}$ state
- Lowest amplitudes:

$$
T^{(V)}=\frac{-7}{2 f_{\pi}^{2}} m_{\pi}^{2} ; \quad T^{(T)}=-\frac{40}{f_{\pi}^{4}} L_{3}^{(T)} m_{\pi}^{4}
$$

- Ratio $R_{\pi \pi}=\frac{T^{(T)}}{T^{(V)}}$ to $\pi \pi$ scattering $\left(L_{3}^{(T)}=0.16 \times 10^{-3}\right)$:

$$
R_{\pi \pi}=\frac{80}{7 f_{\pi}^{2}} L_{3}^{(T)} m_{\pi}^{2}=4 \times 10^{-3}
$$

- Also: $R_{K \bar{K}}=7 \times 10^{-2}$
- Ecker and Zauner, Eur. Phys. J. C 52, 315-323 (2007): Tensor exchange contribution evaluated using ChPT_{2}
- $f_{2}(1270)$ as a $q \bar{q}$ state
- Lowest amplitudes:

$$
T^{(V)}=\frac{-7}{2 f_{\pi}^{2}} m_{\pi}^{2} ; \quad T^{(T)}=-\frac{40}{f_{\pi}^{4}} L_{3}^{(T)} m_{\pi}^{4}
$$

- Ratio $R_{\pi \pi}=\frac{T^{(T)}}{T^{(V)}}$ to $\pi \pi$ scattering $\left(L_{3}^{(T)}=0.16 \times 10^{-3}\right)$:

$$
R_{\pi \pi}=\frac{80}{7 f_{\pi}^{2}} L_{3}^{(T)} m_{\pi}^{2}=4 \times 10^{-3}
$$

- Also: $R_{K \bar{K}}=7 \times 10^{-2}$

Our aim:

- Evaluation of the tensor and vector (ρ) contribution mechanisms to the elastic reactions $\pi^{+} \pi^{-}, K^{+} K^{-}$and $D^{+} D^{-}$, taking $f_{2}(1270)$ dynamically generated
- Comparison: light-heavy ($D \bar{D}$ scattering) and the light sectors

Formalism: elastic reactions $\pi^{+} \pi^{-}, K^{+} K^{-}$and $D^{+} D^{-}$
Tensor contribution mechanism:

$f_{2}(1270)$: dynamically generated from the interaction of two intermediate ρ mesons, which generates two-loop amplitudes

- $f_{2}(1270)$: exchange contribution $\rightarrow S$-wave $I=0, J=2$ channel of the $\rho \rho$ interaction

$$
D(k)=\frac{g_{f_{2}}^{2}}{k^{2}-m_{f_{2}}^{2}} P^{(2)}
$$

$g_{f_{2}}=10551 \mathrm{MeV}$ (Molina et al. PRD 78, 114018 (2008)); 10889 MeV (Geng and Oset, PRD 79, 074009 (2009))

- Loop contributions: Upper and lower vertices can be factorized

- PPV vertex [R. Molina, D. Nicmorus, and E. Oset, Phys. Rev. D 78, 114018 (2008)]:

$$
\mathcal{L}_{P P V}=-i g\left\langle\left[P, \partial_{\mu} P\right] V^{\mu}\right\rangle,
$$

$P, V: q \bar{q}$ matrices in $\mathrm{SU}_{F}(4)$ in terms of pseudoscalar or vector mesons; $g=m_{V} /\left(2 f_{\pi}\right)\left(m_{V}=800 \mathrm{MeV}, f_{\pi}=93 \mathrm{MeV}\right)$;
Loop:

$$
\begin{gathered}
-i V_{\mu \nu}=-C \frac{1}{\sqrt{6}} g_{f_{2}} g^{2} \int \frac{d^{4} q}{(2 \pi)^{4}}\left(\frac{1}{q^{2}-m_{\rho}^{2}+i \epsilon}\right)^{2} \frac{1}{\left(p_{1}+q\right)^{2}-m_{P}^{2}+i \epsilon} \\
\times\left[-\left(2 p_{1}+q\right)_{\mu}+\frac{1}{m_{\rho}^{2}}\left(2 p_{1}+q\right) \cdot q q_{\mu}\right]\left[-\left(2 p_{1}+q\right)_{\nu}+\frac{1}{m_{\rho}^{2}}\left(2 p_{1}+q\right) \cdot q q_{\nu}\right]
\end{gathered}
$$

$C=3 / 2$ to $K \bar{K}$ and $D \bar{D} ; C=4$ to $\pi \pi$

- Cauchy integration over q^{0} (poles: $q^{0}= \pm \omega_{\rho}= \pm \sqrt{\vec{q}^{2}+m_{\rho}^{2}}$)
- At the threshold of the pseudoscalar mesons:
- $V_{0 j}, V_{i 0} \propto p_{i}=0$
- $V_{i j}=a \delta_{i j}+b p_{i} p_{j}=0$
(b does not contribute as $p_{i}=0 ; a$ vanishes when combined with $P^{(2)}$)
- Thus, only V_{00} contributes:

$$
\begin{aligned}
-i V_{00}= & C_{j}^{\prime} \frac{1}{\sqrt{6}} g_{f_{2}} g^{2} i \frac{\partial}{\partial m_{\rho}^{2}} \int \frac{d^{3} q}{(2 \pi)^{3}} \frac{1}{2 \omega_{\rho} \omega_{P}} \frac{\omega_{\rho}+\omega_{P}}{E_{1}^{2}-\left(\omega_{\rho}+\omega_{P}\right)^{2}+i \epsilon} \\
& \times\left(\frac{2 E_{1} \vec{q}^{2}}{m_{\rho}^{2}}\right)^{2} \Theta\left(q_{\max }-|\vec{q}|\right)\left(\frac{\Lambda^{2}}{\Lambda^{2}+\vec{q}^{2}}\right)^{2} \\
\left(C_{j}^{\prime}=3 / 2 \text { for } j=\right. & \left.K, D ; C_{j}^{\prime}=4 \text { for } j=\pi\right)
\end{aligned}
$$

- Combining all ingredients

$$
-i T^{(T)}(k)=\frac{i}{k^{2}-m_{f_{2}}^{2}}\left\{\frac{1}{2}\left[(-i) V_{00}(-i) V_{00}+(-i) V_{00}(-i) V_{00}\right]-\frac{1}{3}(-i) V_{00}(-i) V_{00}\right\}
$$

- At threshold:

$$
T^{(T)}(0)=-\frac{2}{3 m_{f_{2}}^{2}}\left[V_{00}\right]^{2}
$$

- $T^{(T)}(0) \propto m_{i}^{4}, g^{4}, f^{-4}$
- Vector-exchange mechanism: $P P V$ vertex gives the amplitude

$$
-i T^{(V)}(k)=\frac{(-i g)}{\sqrt{2}}\left(2 p_{1}+k\right)^{\mu} \frac{i}{k^{2}-m_{\rho}^{2}}\left(-g_{\mu \nu}+\frac{k_{\mu} k_{\nu}}{m_{\rho}^{2}}\right) \frac{(i g)}{\sqrt{2}}\left(2 p_{1}-k\right)^{\nu}
$$

- At threshold:

$$
T^{(V)}(0)=\left\{\begin{array}{l}
-\frac{2 g^{2}}{m_{\rho}^{2}} E_{1}^{2}(\text { for } K, D) \\
-\frac{8 g^{2}}{m_{\rho}^{2}} E_{1}^{2}(\text { for } \pi)
\end{array}\right.
$$

- Next: evaluation of the ratio between the contributions coming from the tensor-exchange mechanism and the one with exchange of a vector meson:

$$
R=\left|\frac{T^{(T)}(0)}{T^{(V)}(0)}\right|
$$

Results for the evaluation of R

$g_{f_{2}}[\mathrm{MeV}]$	$q_{\max }[\mathrm{MeV}]$	$\pi^{+} \pi^{-} \rightarrow \pi^{+} \pi^{-}$	$K^{+} K^{-} \rightarrow K^{+} K^{-}$	$D^{+} D^{-} \rightarrow D^{+} D^{-}$
10551 (Molina (2008))	600	8.38×10^{-5}	2.960×10^{-4}	4.79×10^{-4}
	700	3.22×10^{-4}	1.29×10^{-3}	2.47×10^{-3}
	800	9.56×10^{-4}	4.22×10^{-3}	9.35×10^{-3}
10889 (Geng (2009))	850	1.53×10^{-3}	7.00×10^{-3}	1.66×10^{-2}
	900	2.34×10^{-3}	1.11×10^{-2}	2.81×10^{-2}
	600	8.93×10^{-5}	3.15×10^{-4}	5.10×10^{-4}
	700	3.43×10^{-4}	1.38×10^{-3}	2.63×10^{-3}
	800	1.02×10^{-3}	4.49×10^{-3}	9.96×10^{-3}
1.63×10^{-3}	7.45×10^{-3}	1.77×10^{-2}		
	850	2.49×10^{-3}	1.18×10^{-2}	2.99×10^{-2}

- $g_{f_{2}}$ from Geng-Oset (2009) is about 3% bigger than the one from Molina et al. (2008): R greater than the former one by $6-7 \%$
- R : increases as $q_{\text {max }}$ increases
- Most importantly: $R \sim 10^{-2}-10^{-5}$
- $m_{f_{2}}^{-2} / m_{\rho}^{-2} \sim 0.4$
- Small magnitude: mainly due to the vertex contribution V_{00}

Comparison to Ecker et al. (2007): we take $g_{f_{2}}=10551 \mathrm{MeV}$ and $q_{\text {max }}=850 \mathrm{MeV}$

- Our case: $R_{\pi \pi} \approx \frac{1}{2.6} R_{\pi \pi}^{(\text {Ecker })}$
- (Our picture produces, with the small fine tuning, a good reproduction of $\left.f_{2}(1270) \rightarrow \pi \pi\right)$
- Our case: $\frac{R_{K \bar{K}}}{R_{\pi \pi}} \approx 4.6$, while $\frac{R_{K K}^{(\text {Ecker })}}{R_{\pi \pi}^{(\text {Ecker })}} \sim 17$
- $\mathrm{SU}(3)$ symmetry: $\frac{R_{K \bar{K}}}{R_{\pi \pi}} \approx m_{K}^{2} / m_{\pi}^{2} \approx 13$ (not far from 17)
- Present case: loops employed to dynamically generate the $f_{2}(1270)$

$$
\left[\left(\frac{C_{K}}{C_{\pi}}\right)^{2} \frac{1}{4}\right]^{-1}=\left[\left(\frac{8}{3}\right)^{2} \frac{1}{4}\right]^{-1}=0.56 \rightarrow 13 \times 0.56 \sim 7.3
$$

(not far from 4.6; extra reduction: from V_{00} [w_{i} in the denominator])

- Tensor exchange with the $f_{2}(1270)$ dynamically generated: visible effect, reducing what one finds with the $S U(3)$ symmetry
- $R_{D \bar{D}} \sim 1-2 \%$ but still small (large mass of the D meson in V_{00} stabilizes R)

Conclusions

- Analysis of the tensor and vector-contribution mechanisms to the elastic reactions involving $\pi^{+} \pi^{-}, K^{+} K^{-}$and $D^{+} D^{-}$
- Tensor-exchange contribution: $f_{2}(1270)$ is dynamically generated from the $\rho \rho$ interaction with the use of a pole approximation (two-loop calculation with triangle loops factorized)
- Tensor-exchange mechanisms: small when compared with those from the vector-exchange processes
- $\pi^{+} \pi^{-}$scattering: results are more ressemblant with $\mathrm{SU}(3)$ picture assumed in Ecker et al. (2007)
- Our picture: tensor contribution for $K \bar{K}$ is stabilized: only about 4.6 times bigger than the one of $\pi^{+} \pi^{-}(\mathrm{SU}(3)$: 17 times larger)
- Our picture: ratio of tensor to vector exchange for the case of D mesons of the order of $1-2 \%$

INCT-FNA
ITUTO NaCIONLD DELIELLA ETECNOLOGLA
FISICA NUCLEAR EAPLICAGOES

