Exotics:

Structure and Production in Heavy Ion Collisions

Su Houng Lee

- Introduction
- Exotics: questions and answers in the quark model
- The structure of X(3872) and Tcc (3875) and production in Heavy Ion Collision
- Final Thoughts

Acknowledgments:

Yonsei group : W. Park, A. Park, J. Hong, S. Noh, H. Yoon, D. Park, External collaborators: Che-Ming Ko, Sungtae Cho, Sanghoon Lim, Yongsun Kim + other ExHIC collaboration

Recent findings of Exotics: Solution to an old topic

- 🖙 Tetraquark:
 - scalar tetraquark (Jaffe 76)
 - → Still controversial
 - But ALICE(Junlee Kim) analysis suggests
 - f_0 is most likely $a(\overline{q}q)$ without (\overline{ss})
- 🖙 Dibaryon
 - H (ududss) dibaryon (Jaffe 77):
 - \rightarrow experimentally not found

- 🖙 Pentaquark
 - Pcs (Gignoux, Silvestre-Brac, Richard 87)
 - Pcs (udusc) (Lipkin 87)
 - → Fermilab E791 : not found

 $P^0_{\bar{c}s} \to K^{*0} K^- p$

- ⊕ + (Diakonov, Petrov, Polyaov 97)
 → LEPS 2003 but not confirmed

Few examples of recent findings that could be probed in HIC

	Tetraquark	Mass	Quark content	2-body Threshold	Observed mode	Ехр
Pound	$\chi_{c1}(3872) X(3872)$	3871.65	[<i>cc</i> q <i>q</i>]	$\overline{D}^0 D^{*0}(3871.69)$ $D^- D^{*+}(3879.92)$	$J/\psi\pi^{-}\pi^{+}$	Belle
Near Threshold	<i>T_{cc}</i> (3875)	3875	$[c ar{u} c ar{d}]$	D ⁰ D ^{*+} (3875.26) D ⁺ D ^{*0} (3876.51)	$D^0 D^0 \pi^+$	LHCb
	$T^{\theta}_{\psi s1}(4000) \\ Z_{cs}(3872)$	4003+i(131)	[cc̄us̄]	$\overline{D}{}^{0}D_{s}^{*+}$ (3977) $J/\psi K^{+}$ (3590.58)	$J/\psi K^+$	LHCb (BES?)
Above Threshold	X(5568)	5568+i(21.9)	[bd̄us̄]	$\frac{B^0K^+(5773)}{B^0_s\pi^\pm (5506.49)}$	$B_s^0\pi^\pm$	D0
	$T^{a}_{c\bar{s}0}(2900)$	2908+i(136)	$[c\bar{s}u\bar{d}]$	2251.77	$D_s^+\pi^+$	LHCb
	X(6600) X(6900)		[cc̄cc̄]	6193.8 MeV	J/ψJ/ψ	CMS LHCb

Types of Exotic particles

	Compact multiquark	Molecule	Resonance
Picture		9 (1)	DD D*D*
Size Threshold width	$\langle r \rangle < 0.6 \text{ fm}$ Near threshold or other small	$\langle r \rangle > 2 \text{ fm}$ Near threshold small	$\langle r \rangle \sim 1 \text{ fm}$ Above threshold or other large
Typical mode	Quark Model	Meson exchange models	Unitary approach Quark model
l used	Effective field theory: consta QCD sum rules: uncertainty	nts	

- In some cases, two pictures seem possible. Compact and Molecular
- Yet, there are common features to exotics not seen in usual hadrons

Why are exotics interesting?

- A New color configuration
- Quark-Gluon Plasma

■ Baryon:
$$3 \times 3 \times 3 = (\overline{3} + 6) \times 3 = 1 + 2 \cdot 8 + 10$$

A new color configuration of SU(3)

Usual ground state hadron

 $(q\overline{q})_{C=1}$ $(qq)_{C=\overline{3}}$ or $(\overline{qq})_{C=3}$

But Exotics contain additional color configurations with higher degeneracy
 For example: Tetraquark state

 $3 \times 3 \times \overline{3} \times \overline{3} = (\overline{3} + 6) \times (3 + \overline{6}) = 3 \times \overline{3} + 6 \times \overline{6} + \dots$ $(qq)_{C=\overline{3}} \otimes (\overline{qq})_{C=\overline{3}} \text{ and } (qq)_{C=\overline{6}} \otimes (\overline{qq})_{C=\overline{6}}$ degeneracy: 3×3 and 6×6 $3 \times \overline{3} \times 3 \times \overline{3} = (1+8) \times (1+8) = 1 \times 1 + 8 \times 8 + \dots$ $(q\overline{q})_{C=1} \otimes (q\overline{q})_{C=1} \text{ and } (q\overline{q})_{C=8} \otimes (q\overline{q})_{C=8}$ degeneracy: 1×1 and 8×8

QGP contains all configurations and correlations -> Exotics

What does the quark model tell us about compact configurations?

- Two-body quark force: color-color and color-spin interaction
- Three-body force: from meson to baryon

Quark Model perspectives on Interaction at short distance – color-color interaction

When brought together need to overcome Additional Kinetic energy >100 MeV

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

Color-Color interaction is not important for short range N-N interaction

$$\sum_{i

$$= 0 - \frac{8}{3} \left(N_{B_{1}} + N_{B_{2}}\right) = \sum_{i

$$= \left(12 + \frac{1}{3}\right) = \left(12 + \frac{1}{3}\right) + \left(12 + \frac{1}{3}\right)$$$$$$

Quark Model perspectives on Interaction at short distance – color-spin interaction

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i$$

Color-spin interaction for 2 body:

 $K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c} \right) \left(\sigma_{i}^{s} \sigma_{j}^{s} \right) \longrightarrow$

K < 0 attraction; K > 0 repulsion

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$K \text{ factor of } 1 \rightarrow 18 \text{ MeV}$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \quad 3 \times \left(\frac{8}{3}\right) - (-8) = 16$$

$$M_{\Delta} - M_{P} \approx 290 \text{ MeV} \rightarrow K \text{ factors} \rightarrow 16 \text{ MeV} \rightarrow K \text{ factors} \rightarrow 16 \text{ MeV} \rightarrow 16 \text{ Me$$

Quark Model vs Lattice comparison : A.Park, Lee, Inoue, Hatsuda, EPJA 56(2020)3,93

NN force in SU(2) spin 1 vs spin 0 channel: comparison to lattice

 $K_{2-N} = K_{6-quark} - (K_{1N} + K_{1N})$ 100 600 500 V_C^{eff}(r) [MeV] 50 400 300 0 $\frac{K_{2-N}^{S=0}}{K_{2-N}^{S=1}} = 1.29 \quad \Rightarrow \text{ comparison}$ 200 -50 100 0.5 0.0 1.0 1.5 2.0 0 0.0 0.5 1.5 2.0 1.0 r [fm]

QCD HAL collaboration

H dibaryon channel: Flavor 1 vs Flavor 27

Full quark model calculation vs Lattice in SU(3) A.Park, Lee, Inoue, Hatsuda, EPJA 56(2020)3,93

Why Heavy quarks are needed for multiquark configuration

Color-color interaction becomes stronger (Karliner Rosner)

$$H_{cc} = \dots + \lambda_i^c \lambda_j^c \left(\frac{g^2}{r_{ij}}\right) + \dots \qquad r \approx \frac{1}{mg^2}, \qquad E_C \approx -mg^4$$

When all light quarks

When heavy quarks, could be compact (Tcc)

Compact multiquarks or loosely bound molecules

Will Look at X(3872) and Tcc(3875)

Can they be compact?

$$I^{G}(J^{PC}) = 0^{+}(1^{++})$$

C q c q

☞ Color-spin (C=color, S=spin)

Solor-color interaction of $(c\overline{c})_{S=1}^{C=8} \otimes (q\overline{q})_{S=1}^{C=8}$ is repulsive

To overcome additional kinetic term attraction has to be >100 MeV

Full quark model calculation \rightarrow Fall apart to two mesons (W. Park, SHL, NPA925 (2014) 161)

$$I^{G}\left(J^{P}\right) = 0^{+}\left(1^{+}\right)$$

Color-spin

$$K_{T_{cc}(3875)} - K_{D} - K_{D^{*}} = \begin{pmatrix} -8\frac{1}{m_{q}^{2}} + \frac{8}{3}\frac{1}{m_{c}^{2}} + \frac{32}{3}\frac{1}{m_{c}m_{q}} \\ -8\sqrt{2}\frac{1}{m_{c}m_{q}} \\ -8\sqrt{2}\frac{1}{m_{c}m_{q}} \\ -\frac{4}{3}\frac{1}{m_{q}^{2}} + 4\frac{1}{m_{c}^{2}} + \frac{32}{3}\frac{1}{m_{c}m_{q}} \\ -\frac{4}{3}\frac{1}{m_{q}^{2}} + 4\frac{1}{m_{c}^{2}} + \frac{32}{3}\frac{1}{m_{c}m_{q}} \\ (ud)_{S=1}^{C=6} \otimes (\overline{cc})_{S=0}^{C=6} \\ (ud)_{S=1}^{C=6} \otimes (\overline{cc})_{S=0}^{C=6} \\ \downarrow \rightarrow \sim +17 \text{ MeV} \end{cases}$$

 \sim Color-color interaction of $(ud)_{S=0}^{C=\overline{3}} \otimes (\overline{cc})_{S=1}^{C=3}$ is attractive

Full quark model calculation \rightarrow Could be compact

Full Quark Model calculation suggests: ex S.Noh, W.Park, Lee, PRD10(2021)114009

☞ There is a strong short range attraction for Tcc \rightarrow Could be compact, but depends sensitively on parameters:

The short range attraction for X(3872) is very weak

 \rightarrow Can not be compact

-2021- Tcc(3875) LHCb coll.

What does the quark model tell us

- Three-body force: from meson to baryon and tetraquark

Quark-Three-body force A. Park, S.Noh, S. Cho, SH Lee, in preparation

Origin could be similar to Nuclear-Three-body force

$$\begin{split} L_{123}^{C-C} &= \frac{4}{3} \bigg(\frac{\lambda_2^c \lambda_3^c}{m_1} + \frac{\lambda_1^c \lambda_3^c}{m_2} + \frac{\lambda_1^c \lambda_2^c}{m_3} \bigg) + 2d^{abc} (\lambda_1^a \lambda_2^b \lambda_3^c) \bigg(\frac{1}{m_1} + \frac{1}{m_2} + \frac{1}{m_3} \bigg) \\ L_{123}^{S-S} &= \frac{1}{m_1 m_2 m_3} \bigg[\frac{4}{3} \bigg(\frac{(\sigma_2 \cdot \sigma_3) (\lambda_2^c \lambda_3^c)}{m_1^2} + \frac{(\sigma_1 \cdot \sigma_3) (\lambda_1^c \lambda_3^c)}{m_2^2} + \frac{(\sigma_1 \cdot \sigma_2) (\lambda_1^c \lambda_2^c)}{m_3^2} \bigg) \\ &\quad + 2d^{abc} (\lambda_1^a \lambda_2^b \lambda_3^c) \bigg(\frac{\sigma_2 \cdot \sigma_3}{m_1^2} + \frac{\sigma_1 \cdot \sigma_3}{m_2^2} + \frac{\sigma_1 \cdot \sigma_2}{m_3^2} \bigg) - 2\epsilon_{ijk} \sigma_1^i \sigma_2^j \sigma_3^k f^{abc} \lambda_1^a \lambda_2^b \lambda_3^c \bigg(\frac{1}{m_1^2} + \frac{1}{m_2^2} + \frac{1}{m_3^2} \bigg) \bigg] . \\ L_{123}^{C-S} &= \frac{4}{3} \bigg[\frac{(\lambda_1^c \lambda_3^c)}{m_2} \bigg(\frac{\sigma_2 \cdot \sigma_3}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) + \frac{(\lambda_1^c \lambda_2^c)}{m_3} \bigg(\frac{\sigma_3 \cdot \sigma_2}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_3}{m_3 m_1} \bigg) + \frac{(\lambda_2^c \lambda_3^c)}{m_1} \bigg(\frac{\sigma_1 \cdot \sigma_3}{m_1 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) \bigg] \\ &\quad + 2d_{abc} (\lambda_1^a \lambda_2^b \lambda_3^b) \bigg[\frac{1}{m_2} \bigg(\frac{\sigma_2 \cdot \sigma_3}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) + \frac{1}{m_3} \bigg(\frac{\sigma_3 \cdot \sigma_2}{m_2 m_3} + \frac{\sigma_1 \cdot \sigma_3}{m_3 m_1} \bigg) + \frac{1}{m_1} \bigg(\frac{\sigma_1 \cdot \sigma_3}{m_1 m_3} + \frac{\sigma_1 \cdot \sigma_2}{m_2 m_1} \bigg) \bigg] \end{split}$$

•

Quark-three-body force: from meson to baryon

$$\mathbf{H}_{\text{Total}} = \mathbf{H}_{2\text{-body}} + A \cdot L^{C-C} + B \cdot L^{S-S} + C \cdot L^{C-S}$$

$$H_{3-\text{body}} = \begin{cases} A \frac{128}{3m_q} - \left(B \frac{128}{3m_q^5} + C \frac{256}{3m_q^3} \right) & \text{For N} \\ A \frac{128}{3m_q} + \left(B \frac{128}{3m_q^5} + C \frac{256}{3m_q^3} \right) & \text{For } \Delta \end{cases}$$

Particlo	Experimental	Mass	Variational	D
1 al ticle	Value (MeV)	(MeV)	Parameter (fm^{-2})	Particle
η_c	2983.6	2996.9	a = 13.1	Λ_c
$J\Psi$	3096.9	3089.6	a = 11.1	Σ_c
D	1864.8	1864.1	a = 4.5	Λ
D^*	2010.3	2010.7	a = 3.7	Σ
π	139.57	139.39	a = 4.6	Σ_c^*
ρ	775.11	775.49	a = 2.2	Σ^*
\overline{K}	493.68	494.62	a = 4.6	p
K^*	891.66	888.82	a = 2.8	Δ

Particle	Experimental	Mass	Variational	
1 al ticle	Value (MeV)	$({ m MeV})$	Parameters (fm^{-2})	
Λ_c	2286.5	2266.7(2281.6)	$a_1 = 2.9, a_2 = 3.7$	
Σ_c	2452.9	2441.6(2480.9)	$a_1 = 2.1, a_2 = 3.8$	
Λ	1115.7	1113.6(1134.1)	$a_1 = 2.8, a_2 = 2.7$	
Σ	1192.6	1196.5 (1231.6)	$a_1 = 2.1, a_2 = 3.1$	
Σ_c^*	2518.5	2522.9 (2567.7)	$a_1 = 2.0, a_2 = 3.4$	
Σ^*	1383.7	1398.9(1455.2)	$a_1 = 1.9, a_2 = 2.4$	
p	938.27	980.47 (1005.3)	$a_1 = 2.4, a_2 = 2.4$	
Δ	1232	1272.1 (1346.8)	$a_1 = 1.8, a_2 = 1.8$	

The standard deviation is $\sigma = 5.86$.

 $\sigma = 24.44(63.10)$

Effect of 3-quark-interaction on Tetraquarks : Repulsive

$$\mathbf{H}_{\text{Total}} = \mathbf{H}_{2\text{-body}} + A \cdot L^{C-C} + B \cdot L^{S-S} + C \cdot L^{C-S}$$

Particle	Measured mass (MeV)	$\sum_{i < j < k} L_{ijk}^{C-C}$	$\sum_{i < j < k} L_{ijk}^{S-S}$	$\sum_{i < j < k} L_{ijk}^{C-S}$
T_{cc}	3875	-4.84236	0.0319013	20.9444
X(3872)	3872	19.3694	0.0427164	-1.36541

Can X(3872) be $D-\overline{D}^*$ and Tcc be $D-D^*$ Molecules?

Perspectives from the π -exchange

Especially important when

 $J_M \neq 0$ Mixing with D-wave and $L \neq (L + L)$ Mixing is strong

 $I_M < (I_D + I_{D^*})$ Mixing is strong

D-wave mixing through π -exchange Tcc: N.A. Tornqvist (94) + Short range attraction (D. Park, et al)

$$V(r)_{+:Tcc: \ D-\bar{D}^{*}}^{::X(3872): \ D-\bar{D}^{*}} = V_{Short}(r) \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \mp 3V_{0} \begin{bmatrix} 0 & -\sqrt{2} \\ -\sqrt{2} & 1 \end{bmatrix} T_{\pi}(r) \end{bmatrix}$$

Central Part=
$$V_{Short}(r)$$
 — ; Tensor Part= $\pm T_{\pi}(r)$ —

II: Measuring Exotics in Heavy Ion Collision:

X(3872) must be dominantly molecular Tcc(3875) could be compact or molecules

Some remarks: in 2008,

IOPscience

Heavy-ion collisions at the LHC—Last call for predictions

N Armesto¹, N Borghini², S Jeon³, U A Wiedemann⁴, S Abreu⁵, S V Akkelin⁶, J Alam⁷,

J L Albacete⁸, A Andronic⁹, D Antonov¹⁰ + Show full author list

Published 18 April 2008 • 2008 IOP Publishing Ltd

Journal of Physics G: Nuclear and Particle Physics, Volume 35, Number 5

Citation N Armesto et al 2008 J. Phys. G: Nucl. Part. Phys. 35 054001

10.3. Charmed exotics from heavy-ion collision

S H Lee, S Yasui, W Liu and C M Ko

Our contribution to the volume

We discuss why charmed multiquark hadrons are likely to exist and explore the possibility of observing such states in heavy-ion reactions at the LHC.

Multiquark hadronic states are usually unstable as their quark configurations are energetically above those of combined meson and/or baryon states. However, constituent quark model calculations suggest that multiquark states might become stable when some of the light quarks are replaced by heavy quarks. Two possible states that could be realistically observed in heavy-ion collisions at LHC are the tetraquark $T_{cc}(ud\bar{c}\bar{c})$ [385] and the pentaquark

Deservation of an exotic narrow doubly charmed tetraquark

LHCb Collaboration*

Theory prediction

PRL 106, 212001 (2011)

PHYSICAL REVIEW LETTERS

week ending 27 MAY 2011

Identifying Multiquark Hadrons from Heavy Ion Collisions

Sungtae Cho,¹ Takenori Furumoto,^{2,3} Tetsuo Hyodo,⁴ Daisuke Jido,² Che Ming Ko,⁵ Su Houng Lee,^{1,2} Marina Nielsen,⁶ Akira Ohnishi,² Takayasu Sekihara,^{2,7} Shigehiro Yasui,⁸ and Koichi Yazaki^{2,3}

Few points in Coalescence model - I

$$\frac{dN_{X}}{dp_{X}} = C \int dx_{1} dx_{2} dp_{1} dp_{2} \frac{dN_{1}}{dp_{1}} \frac{dN_{2}}{V dp_{2}} W(x_{1}, x_{2}, p_{1}, p_{2}) \delta(p_{X} - p_{1} - p_{2})$$

Normalization conditions

$$\int dx_i dp_i \frac{dN_i}{V dp_{i1}} = N_i \qquad \int dx dp W(x, p) = (2\pi)^n$$

• Wigner function $W(x, p) = (2)^n \exp \left| -\frac{x^2}{\sigma^2} - \sigma^2 p^2 \right|$

Should use x, p in CM frame S. Cho, K.J. Sun, C.M. Ko, SH Lee, Y. Oh, PRC101(20)024909

• $\sigma \rightarrow \text{infinity limit}$

$$\frac{dN_{X}}{dp_{X}} = \mathbf{C}\left(\frac{\gamma}{V}\right) \frac{dN_{1}}{dp_{1}} \bigg|_{p_{1}=\frac{p_{X}}{2}} \frac{dN_{2}}{dp_{2}} \bigg|_{p_{2}=\frac{p_{X}}{2}}$$

Few points in Coalescence model - II

• Coalescence probability is suppressed for smaller object when

$$\frac{dN_i}{Vdp_i} \propto \exp\left[-\frac{p_i^2}{2mT}\right] \qquad \qquad W(x,p) = (2)^n \exp\left[-\frac{x^2}{\sigma^2} - \sigma^2 p^2\right]$$

$$\frac{dN_X}{dp_X} = \frac{1}{\left(1 + \frac{1}{mT\sigma^2}\right)^{n/2}} C\left(\frac{\gamma}{V}\right) \frac{dN_1}{dp_1}\Big|_{p_1 = \frac{p_X}{2}} \frac{dN_2}{dp_2}\Big|_{p_2 = \frac{p_X}{2}}$$

correction becomes visible when σ <0.5 fm

A simple fit to Deuteron and ³He using (R_b, V) - I

• Deuteron Pt distribution should be determined by that of proton

- Use
$$\left. \frac{dN_i}{dp} = R_b \frac{dN_{\text{Proton}}}{dp} \right|_{\text{Measured}}$$

$$\frac{d^2 N_{\text{deuteron}}}{d^2 p_T} = \frac{g_d}{g_1 g_2} (2\pi)^2 \gamma \frac{R_b^2}{V} \frac{d^2 N_{\text{Proton}}}{d^2 p_1} \bigg|_{p_1 = \frac{p_T}{2}} \frac{d^2 N_{\text{Proton}}}{d^2 p_2} \bigg|_{p_2 = \frac{p_T}{2}}$$

$$\frac{d^2 N_{_{^{3}\text{He}}}}{d^2 p_T} = \frac{g_h}{g_1 g_2 g_3} \left(2\pi\right)^4 \gamma^2 \frac{R_b^3}{V^2} \frac{d^2 N_{\text{Proton}}}{d^2 p_1} \bigg|_{p_1 = \frac{p_T}{3}} \frac{d^2 N_{\text{Proton}}}{d^2 p_2} \bigg|_{p_2 = \frac{p_T}{3}} \frac{d^2 N_{\text{Proton}}}{d^2 p_3} \bigg|_{p_3 = \frac{p_T}{3}}$$

A simple fit to Deuteron and ³He using (R_b, V) - II

- 1. For r>1.9 fm result are similar to $\sigma \rightarrow$ infinity result
- 2. Both can be fit by choosing $R_b=0.36 \rightarrow similar$ to feed-down effects SHM
- 3. V(2-dim)=608 fm²

Expectation for Molecular configuration of X(3872) and Tcc

- 1. Use measured D and D* Pt distribution
- 2. Use $R_b = 0.31$ from feed-down effects SHM
- 3. Use same V(2-dim)=608 fm^2

Large molecules and compact quark states seem to have different P_T dependence

Final Thoughts:

If X(3872) is a $\overline{D} D^*$ S-wave molecule (with S. Noh, A. Park)

Quark Spatial wave function of X(3872) : $D\overline{D}^*$ molecule

S-wave in
$$(q\overline{c}), (c\overline{q})$$
 basis $D - \overline{D}^*$

$$\psi_1^{Spatial} \propto \exp\left[-a_1 x_1^2 - a_2 x_2^2 - a_3 x_3^2\right]$$

$$R_{D \text{ or } D^*} \sim 0.55 \text{ fm}, \quad R_{D-D^*} \sim 4 \text{ fm}$$

Transformation into
$$(c\overline{c}), (q\overline{q})$$
 basis

$$\begin{array}{c} \mathbf{c} & y_1 \\ \mathbf{c} & y_3 \\ y_3 \\ \mathbf{q} & y_2 \end{array} \qquad \mathbf{c} \\ \mathbf{q} & \mathbf{g} \\ y_2 \end{array}$$

 $R_{(c\bar{c})} \sim 4.01 \text{ fm}$, $R_{(q\bar{q})} \sim 4.06 \text{ fm}$, $R_{(c\bar{c})-(q\bar{q})} \sim 0.394 \text{ fm}$

Quark Color-spin wave function of X(3872): $D\overline{D}^{*}$ molecule

☞ In $(q\overline{c}), (c\overline{q})$ basis

$$|1'\rangle = (q\overline{c})_{S=0}^{C=1} \otimes (c\overline{q})_{S=1}^{C=1} \longrightarrow D - \overline{D}^*$$
$$|2'\rangle = (q\overline{c})_{S=0}^{C=8} \otimes (c\overline{q})_{S=1}^{C=8}$$

☞ Transformation into $(c\overline{c}), (q\overline{q})$ basis

 $|1\rangle = (c\overline{c})_{S=1}^{C=8} \otimes (q\overline{q})_{S=1}^{C=8}$ $|2\rangle = (c\overline{c})_{S=1}^{C=1} \otimes (q\overline{q})_{S=1}^{C=1}$

 $D\overline{D}^*$ is mostly composed of $(c\overline{c})_{S=1}^{C=8} \otimes (q\overline{q})_{S=1}^{C=8}$

Possible explanation of abundant production of X(3872)

$$\checkmark D\overline{D}^*$$
 is mostly composed of $(c\overline{c})_{S=1}^{C=8} \otimes (q\overline{q})_{S=1}^{C=8}$

$$R_{(c\bar{c})} \sim 4.01 \text{ fm}, \quad R_{(q\bar{q})} \sim 4.06 \text{ fm}, \quad R_{(c\bar{c})-(q\bar{q})} \sim 0.394 \text{ fm}$$

 Ψ (2S) production at high Pt is dominated by $(c\bar{c})_{S=1}^{C=8}$ but has to be multiplied by a small overlap into color singlets: NRQCD

✓ X(3872) production at high Pt might be a direct recombination of $(c\overline{c})_{S=1}^{C=8}$ with $(q\overline{q})_{S=1}^{C=8}$ in QGP

Summary

• Most exotics have multiple heavy quark: HIC is an excellent factory

• Production characteristics can reveal the structure of exotics: compact vs molecule

• Enhanced productions always are linked to strong correlation and/or resonance: For example, Hoyle state

→ Measurement of exotics in heavy ion collision will reveal new color configurations, strong correlations and possible resonance structures of quarks and gluons

Visa-free entry to Jeju Island: using direct flight to Jeju https://overseas.mofa.go.kr/sg-en/brd/m 2435/view.do?seq=761394&page=1

Indico https://indico.cern.ch/event/1339154/ Quark Model perspectives on Interaction at short distance – Kinetic term

$$H = \sum_{i=1}^{n} \left(m_i + \frac{p_i^2}{2m_i} \right) - \sum_{i
$$m_q = 300 \text{ MeV}, \ m_s = 500 \text{ MeV}, \ m_c = 1500 \text{ MeV}.$$$$

When brought together need to overcome Additional Kinetic energy

→ To have a compact configuration, short range attraction should be larger than 100 MeV

X(3872): W. Park, SHLee, NPA924(2014) 161

Co

X(3872)
$$\begin{cases} (c\overline{c}) \to (C=8, S=1) \\ (q\overline{q}) \to (C=8, S=1) \end{cases} \qquad H_{cc} = \lambda_c^a \left(\lambda_c^a \frac{g}{r_{cc}} \right) ? \qquad (c) \qquad (c)$$

lor-Color (X(3872)
$$\lambda_{c}^{a}\left(\lambda_{c}^{a}\right) = \frac{1}{2}\left[\left(\lambda_{c}^{a} + \lambda_{c}^{a}\right)^{2} - \lambda_{c}^{2} - \left(\lambda_{c}^{a}\right)^{2}\right]$$

$$\frac{1}{4}\lambda^{2} = C = \frac{1}{3}\left(p^{2} + q^{2} + pq + 3(p+q)\right) \quad C(p=1,q=1) = 3, \quad C_{f}(p=1,q=0) = \frac{4}{3}$$

If *cc* is in
$$(C = 8, S = 1)$$
 $\lambda_c^a (\lambda_c^a) = \frac{4}{2} \left[3 - 2\frac{4}{3} \right] = \frac{2}{3} > 0$

No additional attraction from color-color interaction

 \rightarrow X(3872) can not be compact multiquark state

Tcc(3875) : W. Park, SHLee, NPA924(2014) 161

Tcc(3875)
$$\begin{cases} (ud) \rightarrow (C = \overline{3}, S = 0) \\ (\overline{cc}) \rightarrow (C = 3.S = 1) \end{cases} \quad H_{cc} = \lambda_c^a \left(\lambda_c^a \frac{g}{r_{cc}} \right) ?$$

Color-Color (Tcc)
$$\lambda_{c}^{a}\left(\lambda_{c}^{a}\right) = \frac{1}{2}\left[\left(\lambda_{c}^{a} + \lambda_{c}^{a}\right)^{2} - \lambda_{c}^{2} - \left(\lambda_{c}^{a}\right)^{2}\right]$$

$$\frac{1}{4}\lambda^{2} = C = \frac{1}{3}\left(p^{2} + q^{2} + pq + 3(p+q)\right) \quad C\left(p = 0, q = 1\right) = \frac{4}{3}, \quad C\left(p = 1, q = 0\right) = \frac{4}{3}$$

If \overline{cc} is in $\left(C = 3, S = 1\right) \qquad \lambda_{c}^{a}\left(\lambda_{c}^{a}\right) = \frac{4}{2}\left[\frac{4}{3} - 2\frac{4}{3}\right] = -\frac{8}{3} < 0$

Hence there is additional attraction

 \rightarrow Tcc(3875) could be a compact multiquark state

Quark Model perspectives on Interaction at short distance – color-spin interaction

when two spin is pointing in the same direction outside $H = -\mu_2 \cdot B_1 = s_2 \cdot B_1 \approx s_2 \cdot s_1 > 0$ Hence repulsive inside $H = -\mu_2 \cdot B_1 = s_2 \cdot B_1 \approx -s_2 \cdot s_1 < 0$ Hence attractive

Color-spin interaction for 2 body:

$$K = -\sum_{i < j}^{N} \left(\lambda_{i}^{c} \lambda_{j}^{c} \right) \left(\sigma_{i}^{s} \sigma_{j}^{s} \right) - - -$$

	Q-Q				Q	- Q		
Color	А	S	А	S	1	8	1	8
Flavor	А	А	S	S				
Spin	A(0)	S(1)	S(1)	A(0)	0	0	1	1
K	-8	-4/3	8/3	4	-16	2	16/3	-2/3

K < 0 attraction; K > 0 repulsion

when two spin is pointing in opposite direction outside $H = -\mu_2 \cdot B_1 = s_2 \cdot B_1 \approx s_2 \cdot s_1 < 0$ Hence attractive inside $H = -\mu_2 \cdot B_1 = s_2 \cdot B_1 \approx -s_2 \cdot s_1 > 0$ Hence repulsive ☞ For Deuteron and ³He, results are similar SHM

Nucleus	$N_{SHM}^{Nucleus}/N_{SHM}^p$	$N_{coal}^{Nucleus}/N_{SHM}^p$
d	9.07×10^{-3}	8.84×10^{-3}
³ He	2.68×10^{-5}	2.03×10^{-5}

TABLE II. The yield ratio of light nucleus with proton in Pb– Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. For deuteron and ³He the centralities are 0–10 % and 0–20 %, respectively.

For X(3872) and Tcc, yields for molecular configurations are larger

Tetraquark	dN_{coal}/dy	$N_{coal}/N_{SHMc}^{X(3872)}$	$N_{coal}/N_{SHMc}^{\psi(2S)}$	no feed down for D*
DD^* molecule	$(2.45 \pm 0.71) \times 10^{-3}$	2.47 ± 0.716	0.806 ± 0.234	$N_{\rm curr}^{X(3872)} / N_{\rm curr}^{\psi(2S)} = 0.326$
$Compact \ 4q$	6.2×10^{-4}	6.25×10^{-1}	0.204	SHMc SHMc SHMC

TABLE III. The first column shows the total yield of the tetraquark depending on its structure calculated by the coalescence model in Pb-Pb collisions at $\sqrt{s_{NN}}=5.02$ TeV at 0-10% centrality. The remaining columns show their ratios to the statistical hadronization model with charm (SHMc)[28]. Here we used $dN_{\psi(2S)}/dy = 3.04 \times 10^{-3}$ and $N_{X(3872)}/N_{\psi(2S)} = 0.326$ obtained in SHMc.