Morphology and fragmentation of a massive star-forming filament

Emma Mannfors University of Helsinki emma.mannfors@helsinki.fi

Massive SF filaments / Emma Mannfor

24/05/2023

OUTLINE

- Introduction
- Targets
- Methodology
 - **Observations** ٠
- Analysis
 Results & Discussion
 - **Observations** ٠
 - Simulations ٠

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Introduction

Juvela, M.; Mannfors, E. *Filaments in the OMC-3 cloud and uncertainties in estimates of filament profiles.* Accepted into A&A

Mannfors, E.; Juvela, M; Liu, T; Pelkonen, V.-M. *Comparison of Herschel and ArTéMiS observations of massive filaments*. Submitted. 3 reminders to referee D:

All uncredited images are (adapted) from these papers

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science

Massive SF Filaments / Emma Mannfors

Dust properties: emission

- Dust properties (temperature T, column density $N(H_2)$, optical depth τ) can be estimated by fitting a modified blackbody (MBB) function to Herschel 160-500 µm data

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

5

T=21.8 16.6 12.8 13.9

Dust properties: emission

- T, N(H₂) maps are usually created at lowest resolution (~41")
- Use Aniano et al. (2011) convolution kernels
- And Palmeirim et al. (2013) method for maps at ~20"

$$N(H_2)_P = N(H_2)_{500} + [N(H_2)_{350} - N(H_2)_{350 \rightarrow 500}] + [N(H_2)_{250} - N(H_2)_{250 \rightarrow 350}]$$

FΙ

Dust properties: extinction

- Background light decreases due to absorption/scattering from the ISM
 - Can be used to estimate column densities
 - Independent from FIR estimates of dust emission

$$I_{obs} = I_{fg,true} + (I_{bg,true} \times e^{-\tau}) + \Delta I$$

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science

7

.MIR

Filaments: basics

- Long, thin structures
- Ubiquituous in the ISM
 - In both observations and simulations
 - At multiple scales

Images, top to bottom L1527 (Taurus); JWST NIRCam NASA, ESA, CSA, and STScI, J. DePasquale (STScI); CC BY 4.0 https://spaceref.com/science-and-exploration/webb-space-telescope-views-a-protostar-within-dark-cloud-I1527/ Chamaeleon I region, Herschel ESA/Herschel; acknowledgement: Á. Ribas UGC 11537; Hubble's Wide Field Camera 3 ESA/Hubble & NASA, A. Seth; CC BY 4.0

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI ~1 pc

~100 au

8

~500 pc

Filaments: profile

Profile can be fit with a
Plummer function
R and p are degenerate;
FWHM is more robust

Plummer profile Filament $Y = \operatorname{Conv}\left[N_0 \cdot \left(1.0 + \left(\frac{r + \Delta r}{R_{\text{flat}}}\right)^2\right)^{0.5 - 0.5 \cdot p}\right] + a + b \cdot r,$

- N_0 = maximum intensity
- R_{flat} = width of filament
- p = slope of filament
- Δr = Offset from center

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science

9

 $FWHM = 2 \times |R| \times \sqrt{2^{2^{l(p-1)}} - 1}$

Filaments: characteristic width?

- Filaments in a wide range of environments all were observed to have a 0.1 pc width

- Possibly caused by the change between supersonic and subsonic turbulent gas motions (Padoan et al. 2001) or due to the dissipation mechanism of MHD waves (Hennebelle & André 2013)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Filaments: characteristic width?

Later contensted by e.g.
Smith et al. (2014);
Panopoulou et al. (2017, 2022)
→ Resolution, distance, etc.
can affect derived widths

- Is this just the result of limited resolution? Caused by real physics?

- Debate is ongoing (e.g. André et al. (2022)).

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

https://en.wikipedia.org/wiki/Orion molecular cloud complex https://www.adirondackdailyenterprise.com/opinion/columns/2020/02/the-orion-molecular-cloud-complex/

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- *d* ~ 400 pc

(Großschedl et al. 2018)

- Ongoing SF, feedback from

- High-mass SF region

young massive stars

Faculty of Science

Massive SF Filaments / Emma Mannfors

24/05/2023 13

Orion Molecular Cloud (OMC)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

OMC-3

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science

Massive SF Filaments / Emma Mannfors

Other targets

G17

In Galactic plane *d* ~ 1850 pc

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

G202

- Monoceros OB 1 association
- *d* ~760 pc
- Multiple colliding filaments feeding SF

Montillaud, J., Juvela, M., Vastel, C., et al. 2019a, A&A, 631, L1 Montillaud, J., Juvela, M., Vastel, C., et al. 2019b, A&A, 631, A3

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Methods

Observations

Herschel

- 160, 250, 350, 500 μm
- Lower resolution (FWHM_{beam} ~20-40" ~ 0.04-0.08 pc*)
- Space based \rightarrow sees extended emission

APEX** ArTeMis***

- 350 & 450 µm
- Higher resolution (FWHM_{beam} ~9" ~0.02 pc)
- Does not see extended emission due to filtering of the atmosphere *Spitzer*
 - MIR extinction, 3.6 µm-8 µm
 - Highest resolution (FWHM_{beam} ~2" ~0.004 pc)

*Assuming d = 400 pc

** Atacama Pathfinder EXperiment

*** Architectures de bolometres pour des Telescopes a grand champ de vue dans le domaine sub-Millimetrique au Sol

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science

Massive SF Filaments / Emma Mannfors 24/05/2023

MIR

Combining data

- One dataset with high resolution but no large-scale structure
- One with lower resolution

Image: E. Mannfors, Luna "Meow" Mannfors

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

FIR

Combining (feathering) data

Feathering (uvcombine)* Resulting map has high resolution but also extended emission

Image: E. Mannfors, Luna "Meow" Mannfors

*https://github.com/radio-astro-tools/uvcombine

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

FIR

Estimating absorption

- Estimate extended emission by masking filament and point sources, and convolve by a large beam

 Assume foreground emission = minimum observed surface brightness

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Estimating absorption

- Estimate foreground emission by masking filament and point sources, and convolve by a large beam

 Assume foreground emission = minimum observed surface brightness

 \rightarrow Optical depth map at *FWHM* ~ 2"

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Column densities

- Herschel N(H₂) using MBB (FWHM ~ 20")

- ArTeMiS N(H₂) using 350 um surface brightness ^{-5.1°} (*FWHM* ~ 9") and *Herschel* temperature

- Spitzer N(H2) using the τ map and 8 um dust opacity of 7.5 cm² g $^{-1}$

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI -5.0°

Dec (J2000)

Data types

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science

Massive SF Filaments / Emma Mannfors

.MIR

FIR

Filament extraction

- Filaments were found from the data
 - Main filament from FIR (Herschel and combined) data
 - Four brightest segments from MIR (Spitzer) data

. MIR FIR

Profile fitting

- Extracted profiles perpendicular to filament path
- Fit profile with Plummer function
- Full-width at half-maximum (*FWHM*) describes filament width

. MIR FIR

RA (ICRS)

Significant differences between characteristics in Herschel vs. combined data: filament shape

Using the full filament:

- Widths are significantly larger in H data

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

But no significant difference with filament segment

No change in (mean) width
(Not due to fitting routine)
Why don't densest filament segments show change in widths?

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science

.MIR FIR

Filament widths

Spread in widths caused by hierarchial structure in the ISM?

Method	Full filament <i>Herschel</i>	Full filament F	MIR absorption	FIR emission	FIR emission
Resolution	20"	10"	2"	20"	10"
FWHM (pc)	0.11±0.03	0.05±0.01	0.04	0.02-0.04	~0.05

.MIR FIR Significant differences between characteristics in Herschel vs. combined data: fragmentation

- Clumps in *H* are larger, but have lower mass and density
- Median separation between *H* structures is > Jeans length
- All clumps are stable against gravity \rightarrow not collapsing
- *F* clumps have separation = Jeans lengths
- Two F clumps are potentially collapsing

- No associated protostars with these clumps

Protostars (crosses and asterisks) from Megeath et al. (2012)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Synthetic filament observations

- Used RT simulations to study possible sources of error in filament fitting
 - Single linear filament, with density profile:

 $R = 0.0696 \text{ pc}, p = 3 \rightarrow FWHM = 0.14 \text{ pc} = 72''$

- Isotropic background, and sometimes a point source (B5V star)
- FIR emission calculated with core-mantle-mantle (CMM) dust
- MIR emission calculated with Compiègne et al. (2011; COM) dust model
- Dust scattering with CMM dust
- RT using SOC (Juvela 2019) program
- Column density of filament was varied from $\sim 10^{21} 10^{23}$ cm⁻²
- "Observed" with a Gaussian beam of 24"

Bias in MIR observations

Scattered light

- High τ or strong point sources increase bias due to scattered light but don't generally have a strong effect
- Only significant if N(H₂)≥10²⁴ cm⁻²
- \rightarrow Not significant error source in OMC-3

Thermal dust emission

- *p* and *FWHM* are overestimated near bright point sources
- This effect is worse if the source is along the LOS
- Bias worsens with increasing N(H₂)

Bias in FIR observations

- Often caused by line-of-sight temperature variations
- Increasing $N(H_2) \rightarrow \tau$ is underestimated, p and FWHM overestimated
- A stronger radiation field can compensate for these biases
- Change in dust properties can also affect parameters
- Single-temperature MBB model can cause biases

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- Performed Plummer fits using different methods to test changes in parameters
- Using both observed data and a simulated filament

FIR

 Assumed background shape changes derived parameters
 A stronger polynomial background raises FWHM

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

- A stronger background sky increases uncertainty in *FWHM*

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Simulations

Uncertainties in fitting routines

Increased distance to filament increases *FWHM...*

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Increased distance to filament increases *FWHM...*

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science

Massive SF Filaments / Emma Mannfors

FIR

- Convolving the Plummer with a 1-D convolution means subsequent rows are not correlated \rightarrow more uncertainty - Even moderately strong filaments (Max_{filament} = 8.5 x σ_{BG}) have little error in mean values

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Main conclusions

The ISM shows structure on many scales
 0.1 pc may be an important scale
 Importance of high-resolution data to study fragmentation in more detail

- OMC-3 shows evidence of possible future SF

Bias in filament fitting increases with higher column density
But with a 10x higher radiation field (= higher T), bias decreases
In our simulations, thermal MIR emission is more significant than MIR scattering
All depend on e.g. dust models used

- Filament fitting routines are subject to uncertainty & must be taken into account when comparing results

Future projects

LOri BFROST observations - See talks on Friday (Job, Julien)

Circumplanar gas in nearby galaxies (ALMA)

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science

References

André, P., Palmeirim, P., & Arzoumanian, D. 2022, arXiv e-prints, ArXiv:2210.04736 Aniano, G., Draine, B. T., Gordon, K. D., & Sandstrom, K. 2011, PASP, 123, 1218 Arzoumanian, D., André, P., Didelon, P., et al. 2011, A&A, 529, L6 Großschedl, J. E., Alves, João Meingast, S., Ackerl, C., et al. 2018, A&A, 619, A106 Hennebelle, P. & André, P. 2013, A&A, 560, A68 Juvela, M. & Mannfors, E. 2023, arXiv e-prints, arXiv:2301.06746 Megeath, S. T., Gutermuth, R., Muzerolle, J. Kryukova, E., et al. 2012, AJ, 144, 192 Padoan, P., Juvela, M., Goodman, A. A., & Nordlund, Å. 2001, ApJ, 553, 227 Palmeirim, P., André, P., Kirk, J. andWard-Thompson, D., et al. 2013, A&A, 550, A38 Panopoulou, G. V., Psaradaki, I., Skalidis, R., Tassis, K., & Andrews, J. J. 2017, MNRAS, 466, 2529 Suri, S., Sánchez-Monge, Á., Schilke, P., Clarke, S. D., Smith, R. J., et al. 2019, A&A, 623, A142. Juvela, M.; Mannfors, E. *Filaments in the OMC-3 cloud and uncertainties in estimates of filament profiles.* Accepted into A&A **arXiv:2301.06746** Mannfors, E.; Juvela, M; Liu,T; Pelkonen, V.-M. *Comparison of Herschel and ArTéMiS observations of massive filaments.* Submitted

Cover image: Tarantula Nebula – NIRCam; NASA, ESA, CSA, and STScI Header image: JWST portrait of the Pillars of Creation (MIRI); NASA, ESA, CSA, STScI, J. DePasquale (STScI), A. Pagan (STScI)

HY Flame: JWST portrait of the Pillars of Creation (Ed. E. Mannfors)/Helsingin Yliopisto

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Faculty of Science