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Dust properties: emission

- Dust properties (temperature T, column density N(H
2
), optical depth τ) can be 

estimated by fitting a modified blackbody (MBB) function to Herschel 160-500 μm data

I = Intensity
ν = frequency
ν

0
= reference frequency

B
ν
(T) = Blackbody function at temperature T

β = opacity spectral index ~ 1.8-2.0
κ = dust opacity
μ mH = total mass relative to the H2 molecule

I ν=I ν , 0( Bν(T )

B ν ,0(T ))( ν
ν0 )

β

τν=
I ν , 0

Bν(T )

N (H 2)=
τν

κνμmH

MIR
FIR
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Dust properties: emission

- T, N(H2) maps are usually created at lowest resolution (~41”)
- Use Aniano et al. (2011) convolution kernels 
- And Palmeirim et al. (2013) method for maps at ~20”

N (H 2)P=N (H 2)500+[N (H 2)350−N (H 2)350→500 ]+[N (H 2)250−N (H 2)250→350]

MIR
FIR
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Dust properties: extinction

- Background light decreases due to absorption/scattering from the ISM
- Can be used to estimate column densities
- Independent from FIR estimates of dust 
  emission

I obs=I fg , true+(I bg , true×e−τ
)+Δ I

MIR
FIR
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Filaments: basics

- Long, thin structures
- Ubiquituous in the ISM

- In both observations and 
   simulations
- At multiple scales

Images, top to bottom
L1527 (Taurus); JWST NIRCam
NASA, ESA, CSA, and STScI, J. DePasquale (STScI); CC BY 4.0
https://spaceref.com/science-and-exploration/webb-space-telescope-views-a-protostar-within-dark-cloud-l1527/
Chamaeleon I region, Herschel
ESA/Herschel; acknowledgement: Á. Ribas
UGC 11537; Hubble’s Wide Field Camera 3 
ESA/Hubble & NASA, A. Seth; CC BY 4.0

~100 au

~1 pc

~500 pc
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Filaments: profile

Filament

FWHM=2×|R|×√22 /( p−1)
−1

Plummer profile

N
0
 = maximum intensity

R
flat

= width of filament
p  = slope of filament
Δr = Offset from center

- Profile can be fit with a 
Plummer function
- R and p are degenerate; 
FWHM is more robust
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Filaments: characteristic width?

- Filaments in a wide range of 
environments all were 
observed to have a 0.1 pc 
width
- Possibly caused by the 
change between supersonic 
and subsonic turbulent gas 
motions (Padoan et al. 2001) 
or due to the dissipation 
mechanism of MHD waves 
(Hennebelle & André 2013)



Faculty of Science 24/05/2023Massive SF Filaments / Emma Mannfors 11

Filaments: characteristic width?

- Later contensted by e.g. 
Smith et al. (2014); 
Panopoulou et al. (2017, 2022)
→ Resolution, distance, etc. 
can affect derived widths

- Is this just the result of limited 
resolution? Caused by real 
physics? 
 - Debate is ongoing (e.g. 
André et al. (2022)). 

?

??



OMC-3
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Orion Molecular Cloud (OMC)

- d ~ 400 pc 
(Großschedl et al. 2018)

- High-mass SF region
- Ongoing SF, feedback from 
young massive stars

Images: 
https://en.wikipedia.org/wiki/Orion_molecular_cloud_complex
https://www.adirondackdailyenterprise.com/opinion/columns/2020/02/the-orion-molecular-cloud-complex/

https://en.wikipedia.org/wiki/Orion_molecular_cloud_complex
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Orion Molecular Cloud (OMC)
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OMC-3



Other targets
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G17

In Galactic plane
d ~ 1850 pc

Convolved with 
a wide beam
(~40 pix)
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G202

- Monoceros OB 1 association
- d ~760 pc
- Multiple colliding filaments feeding SF

Montillaud, J., Juvela, M., Vastel, C., et al. 2019a, A&A, 631, L1
Montillaud, J., Juvela, M., Vastel, C., et al. 2019b, A&A, 631, A3



Methods
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Observations

Herschel 
- 160, 250, 350, 500 μm
- Lower resolution (FWHM

beam
 ~20-40” ~ 0.04-0.08 pc*)

- Space based → sees extended emission
APEX** ArTeMis***

- 350 & 450 μm
- Higher resolution (FWHM

beam
 ~9” ~0.02 pc)

- Does not see extended emission due to filtering of the atmosphere
Spitzer

- MIR extinction,  3.6 μm-8 μm
- Highest resolution (FWHM

beam
 ~2” ~0.004 pc)

** Atacama Pathfinder EXperiment
***  Architectures de bolometres pour des Telescopes a grand champ de vue dans le domaine sub-Millimetrique au Sol

*Assuming d = 400 pc

MIR
FIR
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Combining data

- One dataset with high resolution but no large-scale structure 
- One with lower resolution

Image: E. Mannfors, Luna  “Meow” Mannfors

MIR
FIR
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Combining (feathering) data

Feathering (uvcombine)*
Resulting map has high resolution but also extended emission

Image: E. Mannfors, Luna  “Meow” Mannfors

MIR
FIR

*https://github.com/radio-astro-tools/uvcombine
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Estimating absorption

- Estimate extended emission by masking 
filament and point sources, and convolve 
by a large beam
- Assume foreground emission = minimum 
observed surface brightness

MIR
FIR



Faculty of Science 24/05/2023Massive SF Filaments / Emma Mannfors 29

Estimating absorption

- Estimate foreground emission by masking 
filament and point sources, and convolve 
by a large beam
- Assume foreground emission = minimum 
observed surface brightness
→ Optical depth map at FWHM ~ 2”

MIR
FIR
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Column densities

- Herschel N(H2) using MBB (FWHM ~ 20”)

- ArTeMiS N(H2) using 350 um surface brightness 
(FWHM ~ 9”) and Herschel temperature

- Spitzer N(H2) using the τ map and 8 um dust 
opacity  of 7.5 cm2 g-1

MIR
FIR
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Data types

Emission Extinction

Herschel
250, 350, 500 um

ArTeMis
350 um

Spitzer
8 um

MIR
FIR
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Filament extraction

- Filaments were found from the data
- Main filament from FIR (Herschel and combined) data
- Four brightest segments from MIR (Spitzer) data 

MIR
FIR
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Profile fitting

- Extracted profiles perpendicular to  
filament path 
- Fit profile with Plummer function
- Full-width at half-maximum (FWHM) 
describes filament width

OMC-3 F

MIR
FIR



Results
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Significant differences between characteristics in Herschel 
vs. combined data: filament shape

Using the full filament: 
- Widths are significantly larger in H data 

MIR
FIR
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But no significant difference with filament segments:

- No change in (mean) width
- (Not due to fitting routine)
-Why don’t densest filament 
segments show change in 
widths?

Segment A is close to map edge in AR map

MIR
FIR
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Filament widths

Method Full 
filament 
Herschel 

Full 
filament 
F 

MIR 
absorption 

FIR 
emission 

FIR 
emission

Resolution 20” 10” 2” 20” 10”

FWHM (pc) 0.11±0.03 0.05±0.01 0.04 0.02-0.04 ~0.05 

MIR
FIR

Spread in widths caused by hierarchial structure in the ISM? 
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Significant differences between characteristics in Herschel 
vs. combined data: fragmentation

- Clumps in H are larger, but have lower 
mass and density
- Median separation between H structures 
is > Jeans length
- All clumps are stable against gravity → 
not collapsing
- F clumps have separation = Jeans 
lengths
- Two F clumps are potentially collapsing 

- No associated protostars with these 
clumps

Protostars (crosses and asterisks) from Megeath et al. (2012)

MIR
FIR
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Synthetic filament observations

- Used RT simulations to study possible sources of error in filament fitting
- Single linear filament, with density profile: 

R = 0.0696 pc, p = 3 → FWHM = 0.14 pc = 72′′
- Isotropic background, and sometimes a point source (B5V star)
- FIR emission calculated with core-mantle-mantle (CMM) dust
- MIR emission calculated with Compiègne et al. (2011; COM) dust model
- Dust scattering with CMM dust
- RT using SOC (Juvela 2019) program
- Column density of filament was varied from ~1021 – 1023 cm-2

- “Observed” with a Gaussian beam of  24”

Simulations
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Bias in MIR observations

Scattered light
- High τ or strong point sources increase bias due to scattered light
  but don’t generally have a strong effect
- Only significant if N(H2)≥1024 cm-2 
→ Not significant error source in OMC-3

Thermal dust emission
- p and FWHM are overestimated near bright point sources 
- This effect is worse if the source is along the LOS
- Bias worsens with increasing N(H2)

Simulations
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Bias in FIR observations

- Often caused by line-of-sight temperature variations
- Increasing N(H2) → τ is underestimated, p and FWHM overestimated
- A stronger radiation field can compensate for these biases
- Change in dust properties can also affect parameters
- Single-temperature MBB model can cause biases 

Simulations
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Uncertainties in fitting routines

MIR
FIR

- Performed Plummer fits using different methods to test changes in parameters
- Using both observed data and a simulated filament
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Uncertainties in fitting routines

- Assumed background shape 
changes derived parameters
- A stronger polynomial 
background raises FWHM

Simulations
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Uncertainties in fitting routines

- A stronger background sky 
increases uncertainty in 
FWHM

Simulations
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Uncertainties in fitting routines

Increased distance to 
filament increases FWHM... 

Simulations
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Uncertainties in fitting routines

Increased distance to 
filament increases FWHM... 

… also in observed filaments

MIR
FIR
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Uncertainties in fitting routines

← stronger BG

- Convolving the Plummer with a 1-D 
convolution means subsequent rows 
are not correlated → more uncertainty
- Even moderately strong filaments 
(Maxfilament = 8.5 x σBG) have little error 
in mean values

Simulations



Main conclusions
- The ISM shows structure on many scales

0.1 pc may be an important scale
- Importance of high-resolution data to study fragmentation in more detail

- OMC-3 shows evidence of possible future SF

- Bias in filament fitting increases with higher column density
- But with a 10x higher radiation field (= higher T), bias decreases

- In our simulations, thermal MIR emission is more significant than MIR scattering 
- All depend on e.g. dust models used

- Filament fitting routines are subject to uncertainty & must be taken into account 
when comparing results 



Future projects
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LOri BFROST observations
- See talks on Friday (Job, Julien)

Circumplanar gas in nearby galaxies (ALMA)
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Cover image: Tarantula Nebula – NIRCam; NASA, ESA, CSA, and STScI
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