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Dust column densities: errors, estimates, and error estimates
M. Juvela  – University of Helsinki

Analysis of FIR dust emission
● problem of multiple temperatures
● answer: multi-component modified 

blackbody  (MBB) models ? 
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column density
– extinction

● NIR background stars with low angular 
resolution – or very high resolution but 
sparse sampling

– Malinen et al. 2013: TMC-1N
● MIR extinction, as used in connection with 

infrared dark clouds (IRDCs)
– Butler & Tan 2012; Butler, Tan, 

Kainulainen 2014; Kainulainen et al. 
2017; Mattern et al. 2018

– requires high column density, bright 
background, and low local emission

● independent of temperature  

– dust emission
● sensitive to T variations in the beam Spitzer 8µm

OMC-3
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● parameters vs. size of fitted area, FIR vs. MIR data

      Herschel             Herschel                 Herschel +                 MIR
                                                                         Artemis                      extinction
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Examination of uncertainties

● radiative transfer modelling of Plummer-profiled cylinders
– FIR: variable radiation field  temperature variations    bias⇒ ⇒ τ  

● weak vs. strong field,  isotropic or with a point source

– FIR: dust populations   
● effective optical depth      temperature contrast      → → N  bias

– MIR: local cattering 
● effects of  isotropic background vs. point source (in front, behind, towards one 

side)

– MIR: local dust mission
● stochastically heated grains;  effects of isotropic background vs. point source
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FIR: radiation field 
● higher N → larger errors
● higher radiation field → higher Tdust → more accurate N 

isotropic

B5V ~1 pc behind

B5V ~1 pc on one side

1022 cm-2  
       3×1022 cm-2  
              1023 cm-2  

dashed lines 
       = 10 χ
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MIR: Scattered light 

● small effect at 8µm
– unless N and  high, χ I bg low

– or scattering efficiency very high

– increases FWHM

● example N=1024 cm-2    ☞
– =1   +   B5Vχ
– field    ×20 

– field  ×100 
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MIR: Dust emission 

● can be significant in case of 
high radiation fields
– increases p estimates

● example
– N (H2) = 3×1023 cm-2 

– χ =1  and  B5V
● correct I bg 

● I bg modified by dust emission

– χ =10 radiation field (black curves)  
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OMC-3: Conclusions
● OMC-3 filament FWHM ~ 0.05 pc

– MIR extinction ~  FIR dust emission

– no strong dependence on data resolution 

● some bias always to be expected
– scattering has limited impact in the MIR

– dust emission can affect MIR results: 
FWHM and  p  overestimated

– FIR overestimates FWHM
● effects larger at high column densities 

and in a weak radiation field
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FIR: Modified blackbody functions (MBBs) and column density

Iν  =   Σmass  ×  Bν( Tdust )  ×  κ(ν)
– opacity κ  has powerlaw index β, 

but Tdust and β are degenerate
                    ⇒  
keep free parameters 
    (1)  temperature Tdust   
    (2)  Σmass  or intensity scaling I0 

Line-of-sight temperature 
variation needs to be taken 
into account  ⇒  N>1 !
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Single MBB

● parameters:   I0,  Tdust 
● example:

– 160, 250, 350, and 
500 µm observations

● no observational noise
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Single MBB

● parameters:   I0,  Tdust   
● example:

– 160, 250, 350, and 
500 µm observations

● no observational noise:

fit ok,  χ2 close to zero 
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Two components

● parameters: I1, T1, I2, T2 
– T = 14,  17 K  and  τ1 = τ2 

● example:
– 160, 250, 350, and 

500 µm observations
● no observational noise
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Two components

● parameters: I1, T1, I2, T2 
– T = 14,  17 K  and  τ1 = τ2 

● example:
– 160, 250, 350, and 

500 µm observations
● no observational noise

⇒ not quite ok ! 
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Degeneracies

 T  vs.  β                                                             T1  vs.  T2  

Juvela et al. (2012)                                                                                                        Juvela et al.
                                                                                                                                                          (2023b)
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practical / computational
problem of beam sizes    

fundmental problem of 
parameter degeneracy 
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Angular resolution

● FWHM changes between bands    ⇒
1)  convolve data to common resolution  ⇒  each pixel an independent MBB(s) fit

2)  data at original resolution:    observation  =  model      beam⨂   
• an optimisation problem with millions of parameters 
• each step includes convolution of model-predicted maps

– PPMAP (Marsh et al. 2015) is one widely used method… but run time for 128×128 pixel map 
and a few MBB components seems to be over  XX hours !

● minimum number of points in phase space to reach  χ2 ~ 1
● “Direct maximisation of the a posteriori probability would involve 

searching a prohibitively large parameter space”  
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Direct optimisation  –   Basis functions  

First test:  simulated data with Tdust ~ N( T , σ) –  〈 〉 no convolutions 
● fitted model is the sum of MBBs with 

– N-TMPL:  fixed temperatures TC  +  intensity scaling
– N-MBB:    free   temperatures  Ti   +  intensity scaling

1-MBB  (2 free parameters)
2-MBB  (4 free parameters )
2-TMPL (2 free; TC=13, 17 K)

accurate match to observations ≠ accurate estimates of column density

σ = 1 K                                              σ = 5 K
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Synthetic observations: Multi-component + multi-beam

● 1875×1875 pixel maps of a MHD 
simulation of a star-forming cloud
– Tdust varies from ~6 K to over 100 K

● N-TMPL and N-MBB very slightly 
better than 1-MBB
– bias reduced
– higher angular resolution  (×2) 

● run times ~ ½ hours  (CG+GPU)
– N-TMPL in Fourier space ~ one minute  
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Markov chain Monte Carlo

● even MCMC feasible, using SED 
templates for temperature 
distributions 
–  T ~ N(T0, σT)

● parallel processing of patches with 
separation larger than the beams

● 320×320 pixels, run time one hour
● accuracy of   (1) estimated τ      ☞

                           (2) filament FWHM  ☞

Filaments: temperature gradients from T1=15 K 
on the outside to T2 = 11 K or 19 K in the centre.   

τ

FWHM

τ

FWHM
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N-MBB – or 1-MBB with corrections?
1) Try to apply more complex models to the few observed data, in the hope that the 

model happens to be realistic enough to make good predictions of N

2) Use a simple model (e.g. 1-MBB), combined with empirical corrections

● The latter option was tested with the MHD model
– the most challending case, with diffuse regions, and hot and cold cores (6-100K)

– as the first test, one can just look at the width of the SED 
● narrow Tdust distribution    SED is a single MBB⇒
● broad distribution of Tdust values    SED is ⇒ wider compared to best-fit MBB   

– r = ratio of observed intensity and the 1-MBB fitted value
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size of the area 
used for training
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1-MBB fit                                                                                 1-MBB + empirical correction
                                                                                                    as good as multi-MBB models
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Conclusions
● One can fit multi-MBB models using

– full data resolution  

– direct optimisation 

– even MCMC 

● Should one?
– degenerate basis functions, large model errors (0...∞)

– fit quality  ≈  low χ2   ≠  accuracy of model prediction

– depends on the chosen priors 

– parameterised temperature distributions better than discrete MBBs ?

● However, a single MBB is fast – and reliably biased 
– empirical corrections may provide reasonable accuracy  
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