Dust column densities: errors, estimates, and error estimates

M. Juvela – University of Helsinki

Analysis of FIR dust emission

- **problem** of multiple temperatures
- **answer**: multi-component modified blackbody (MBB) models **?**

column density

- extinction
 - **NIR** background stars with low angular resolution or very high resolution but sparse sampling
 - Malinen et al. 2013: TMC-1N
 - **MIR** extinction, as used in connection with infrared dark clouds (IRDCs)
 - Butler & Tan 2012; Butler, Tan, Kainulainen 2014; Kainulainen et al. 2017; Mattern et al. 2018
 - requires high column density, bright background, and low local emission
 - independent of temperature
- dust emission
 - sensitive to T variations in the beam

23/05/23

• parameters vs. size of fitted area, FIR vs. MIR data

Examination of uncertainties

- radiative transfer modelling of Plummer-profiled cylinders
 - FIR: variable radiation field \Rightarrow temperature variations \Rightarrow τ bias
 - weak vs. strong field, isotropic or with a point source
 - FIR: dust populations
 - effective optical depth \rightarrow temperature contrast \rightarrow N bias
 - MIR: local cattering
 - effects of isotropic background vs. point source (in front, behind, towards one side)
 - MIR: local dust mission
 - stochastically heated grains; effects of isotropic background vs. point source

FIR: radiation field

- higher $N \rightarrow$ larger errors
- higher radiation field \rightarrow higher $T_{dust} \rightarrow$ more accurate N

true value

10²² cm⁻²

3×10²² cm⁻²

MIR: Scattered light

- small effect at 8µm
 - unless N and χ high, I be low
 - or scattering efficiency very high
 - increases FWHM

- example N=10²⁴ cm⁻² 3
 - $-\chi = 1 + B5V$
 - field ×20
 - field ×100

MIR: Dust emission

- can be significant in case of high radiation fields
 - increases p estimates

- example
 - $N(H_2) = 3 \times 10^{23} \text{ cm}^{-2}$
 - χ =1 and B5V
 - correct / bg
 - *I* ^{bg} modified by dust emission
 - $\chi = 10$ radiation field (black curves)

23/05/23

OMC-3: Conclusions

- OMC-3 filament FWHM ~ 0.05 pc
 - MIR extinction ~ FIR dust emission
 - no strong dependence on data resolution
- some bias always to be expected
 - scattering has limited impact in the MIR
 - dust emission can affect MIR results:
 FWHM and *p* overestimated
 - FIR overestimates FWHM
 - effects larger at high column densities and in a weak radiation field

23/05/23

FIR: Modified blackbody functions (MBBs) and column density

 $I_{\nu} \approx \int_{0}^{\prime \nu} B_{\nu}(T_{\text{dust}}) e^{-\tau_{\nu}'} d\tau_{\nu}'$ $\sum B_{\nu}(T_{\mathrm{dust},i}) \left(1 - e^{-\tau_{\nu,i}}\right)$ $-\kappa_{
u_0}(
u/
u_0)^{\beta}\Sigma_{_{\mathrm{mass}}}$ $\tau_{\nu} = \kappa_{\nu} \Sigma_{\text{mass}}$ \approx N $\sim \sum \overline{\Sigma_{
m mass}} B_{
u}(T_{
m dust}) \, \kappa_{
u_0} \, (
u \, / \,
u_0)^{m eta}$ I_{ν} i=1

 $I_{v} = \sum_{\text{mass}} \times B_{v}(T_{\text{dust}}) \times \kappa(v)$

variation needs to be taken into account $\Rightarrow N>1$!

Single MBB

- parameters: *I*₀, *T*_{dust}
- example:
 - 160, 250, 350, and
 500 μm observations
- no observational noise

Single MBB

- parameters: *I*₀, *T*_{dust}
- example:
 - 160, 250, 350, and
 500 μm observations
- no observational noise

Single MBB

- parameters: *I*₀, *T*_{dust}
- example:
 - 160, 250, 350, and
 500 μm observations
- *no* observational noise:
 - fit ok, χ^2 close to zero

Two components

- parameters: *I*₁, *T*₁, *I*₂, *T*₂
 - T = 14, 17 K and $\tau_1 = \tau_2$
- example:
 - 160, 250, 350, and
 500 μm observations
- no observational noise

Two components

- parameters: *I*₁, *T*₁, *I*₂, *T*₂
 - T = 14, 17 K and $\tau_1 = \tau_2$
- example:
 - 160, 250, 350, and
 500 μm observations
- no observational noise

Two components

- parameters: *I*₁, *T*₁, *I*₂, *T*₂
 - T = 14, 17 K and $\tau_1 = \tau_2$
- example:
 - 160, 250, 350, and
 500 μm observations
- *no* observational noise
 ⇒ not quite ok !

Degeneracies

Angular resolution

- FWHM changes between bands ⇒
 - 1) *convolve* data to common resolution ⇒ each pixel an **independent** MBB(s) fit
 - 2) data at *original* resolution: **observation = model** 🛞 **beam**
 - an optimisation problem with millions of parameters
 - each step includes convolution of model-predicted maps
 - PPMAP (Marsh et al. 2015) is one widely used method... but run time for 128×128 pixel map and a few MBB components seems to be over XX hours !
 - minimum number of points in phase space to reach $\chi^2 \sim 1$
 - "Direct maximisation of the a posteriori probability would involve searching a prohibitively large parameter space"

Direct optimisation – Basis functions

First test: simulated data with $T_{dust} \sim N(\langle T \rangle, \sigma) - no convolutions$

- fitted model is the sum of MBBs with
 - *N*-**TMPL**: fixed temperatures *T*_c + intensity scaling
 - *N*-**MBB**: free temperatures *T*_i + intensity scaling

1-MBB (2 free parameters)
2-MBB (4 free parameters)
2-TMPL (2 free; *T*_c=13, 17 K)

accurate match to observations \neq accurate estimates of column density

M. Juvela: Column densities

Synthetic observations: Multi-component + multi-beam

- 1875×1875 pixel maps of a MHD simulation of a star-forming cloud
 - T_{dust} varies from ~6 K to over 100 K
- *N*-TMPL and *N*-MBB very *slightly* better than 1-MBB
 - bias reduced
 - higher angular resolution (×2)
- run times ~ ¹/₂ hours (CG+GPU)
 - *N*-TMPL in Fourier space ~ one minute

Markov chain Monte Carlo

- even MCMC feasible, using SED templates for temperature *distributions*
 - $T \sim N(T_0, \sigma_T)$
- parallel processing of patches with separation larger than the beams
- 320×320 pixels, run time one hour
- accuracy of (1) estimated τ [□]
 (2) filament FWHM [□]

Filaments: temperature gradients from $T_1=15$ K on the outside to $T_2=11$ K or **19** K in the centre.

N-MBB – or 1-MBB with corrections?

- 1) Try to apply more complex models to the few observed data, in the hope that the model happens to be realistic enough to make good predictions of *N*
- 2) Use a simple model (e.g. 1-MBB), combined with empirical corrections
- The latter option was tested with the MHD model
 - the most challending case, with diffuse regions, and hot and cold cores (6-100K)
 - as the first test, one can just look at the **width of the SED**
 - narrow T_{dust} distribution \Rightarrow SED is a single MBB
 - broad distribution of T_{dust} values \Rightarrow SED is **wider compared to best-fit MBB**

 $\Sigma(\Delta I_{\nu}/I_{\nu}) = r(160\,\mu\text{m}) - r(250\,\mu\text{m}) - r(350\,\mu\text{m}) + r(500\,\mu\text{m})$

- r = ratio of observed intensity and the 1-MBB fitted value

size of the area used for training

1-MBB + empirical correction as good as multi-MBB models

1-MBB fit

Conclusions

- One can fit multi-MBB models using
 - full data resolution
 - direct optimisation
 - even MCMC
- Should one?
 - degenerate basis functions, large model errors $(0...\infty)$
 - fit quality \approx low $\chi^2 \neq$ accuracy of model prediction
 - depends on the chosen priors
 - parameterised temperature distributions better than discrete MBBs ?
- However, a single MBB is fast and reliably biased
 - empirical corrections may provide reasonable accuracy