Automatized search for hub-filament systems in numerical simulations data

Dana Makarova, Sanzhar Umbet and Dana Alina Nazarbayev University

> Cold Cores 2023 May 24 – May 26, 2023

Massive Star Formation

A simulated star-forming region where massive stars destroy their parent cloud. Image credit: STARFORGE (STAR FORmation in Gaseous Environments).

One of the clearest example of HFSs Mon R2

Three-color image of the Mon R2 cluster-forming hub-filaments system

Red: H2 column density map derived from Herschel SPIRE and PACS observations (Didelon et al. 2015), green: 1.65 μm band of the Two Micron All Sky Survey (Skrutskie et al. 2006), and blue: 560 nm band of the Digitalized Sky Survey (Lasker et al. 1990).

One of the clearest examples of HFSs Mon R2

- Main filaments
- Secondary filaments
- Main filaments extend into the central hub
- Ring-shaped or spiral morphology within the hub

H2 column density maps from Herschel. The "skeleton" of identified filaments are marked with solid black or yellow lines. (Didelon et al. 2015).

Examples of HFSs

NGC 6334

IC5146

(Chung et al., 2022) (Wang et al., 2019)

Upper: The crests of the identified filamentary structures (Arzoumanian et al. 2021); *Lower:* Column density map of the filament. The black curve shows the crest of the filament traced with FilFinder (Koch & Rosolowsky 2015). Composite 3-color image of IC 5146 (Arzoumanian et al., 2011).

Hub Filament Systems

01

are the highest density regions where several filaments converge. (Treviño-Morales et al., 2019)

03

are often host most of the star formation in a filamentary cloud and hence are the potential sites for cluster formation. (Wang et al., 2019)

02

are junctions of filaments, which are high column density and low aspect ratio objects. (Kumar et al., 2022)

04

are regions that host a number of clumps in different phases, where observed an active highmass star formation. (Arzoumanian et al., 2021)

Simulations

SND Supernova-driven magnetohydrodynamic simulation

(Padoan et al., 2020, Lu et al., 2021)

3 datacubes at 15.4, 23.3, and 34.2 Myr after self-gravity included;

Size: 250 pc;

Self-gravity included at 55.5 Myr.

The Enzo Project - ENZO Isothermal, self-gravitating, supersonic magnetohydrodynamic simulation

(Collins et al. 2012, Burkhart et al. 2015)

9 datacubes at 0.1, 0.3, and 0.6 t_{ff} for $\beta_0 = 0.2$, 2, and 20, where the croud-averaged freefall time is $t_{\rm ff} = (3\pi/32G\rho_0)^{1/2}$ and β_0 - mean thermal-tomagnetic pressure ratio. The Galactica simulation database - LS Turbulent, self-gravitating and magnetized interstellar medium simulation

6 datacubes at two times for 3, 6, and $12 \mu G$;

Algorithm

- Preprocessing
- Morphological criterium
- Density criterium
- Velocity criterium

Algorithm - Preprocessing

The alternative ways of the clusterization are also applicable. *Left:* The example of SCIMES clustering in the data cube. *Right:* The example of a SCIMES cluster and its skeleton.

Algorithm - Morphological criterium

Branches criterium relies on the branches' count of each potential node. If a node has three or more branches, then it is marked as a node.

Upper left: The example of a SCIMES cluster. *Lower left:* The example of the identified node and its skeletonized branches. Right: The example of the identified node and its branches in volume.

Algorithm - Physical criterium

Density criterium checks if the node is the local density maximum.

Upper left: The example of the identified node and its branches in volume. Lower left: The radial profile of the density. Right: The example of the identified node's density.

Algorithm - Physical criterium

Velocity criterium checks the velocity uniformity and the branches inflow.

Results - SND

Example of the potential hub

Results - SND

Statistics of the resulted number of clusters and potential hubs

The amount of clusters is inversely proportional to the star-formation rate.

The amount of potential hubs is proportional to the star-formation efficiency.

Results - ENZO

Cube*	Step 1, N	Step 2, N	Step 3, N
ENZO $\beta=2, t=0.1 t_{ff}$	443	43	19
ENZO $\beta=2, t=0.3 t_{ff}$	222	9	4

Example of the potential hub

Results - ENZO

Statistics of the resulted number of clusters

t=0.1 *t_{ff}* **t=0.3** *t_{ff}* **t=0.6** *t_{ff}*

The amount of clusters increases with time for $\beta=2$ and $\beta=20$.

Results - LS

Results - LS

Statistics of the resulted number of clusters

The number of clusters decreases as magnetization increases.

Summary

Method for the identifying HFSs in the 3D-simulation data.

Different clusterization methods applicable for preprocessing (e.g. density threshold, DBSCAN, etc.)

The amount of the potential hubs increases with the star-formation efficiency in SND. Three-step method is highly

efficient in removing almost 98% of falsely identified hubs.

Potential hub-filament systems do

not persist through the different epochs of one simulation.

The amount of SCIMES clusters is increases with time in ENZO and decreases as magnetization increases in LS.

Derive characteristic

properties of the found simulated potential hubs

Create syntheticobservations out of the found hub-filament systems

Analyze the obtained synthetic observations

Try to adopt the algorithm for the observational data

Objectives

Reference List

- Arzoumanian, D., André, Ph., Didelon, P., Könyves, V., Schneider, N., Men'shchikov, A., Sousbie, T., Zavagno, A., Bontemps, S., Di Francesco, J., Griffin, M., Hennemann, M., Hill, T., Kirk, J., Martin, P., Minier, V., Molinari, S., Motte, F., Peretto, N., ... Wilson, C. D. (2011). Characterizing interstellar filaments withherschelin IC 5146. Astronomy & Astrophysics, 529. https://doi.org/10.1051/0004-6361/201116596
- Arzoumanian, D., Furuya, R. S., Hasegawa, T., Tahani, M., Sadavoy, S., Hull, C. L., Johnstone, D., Koch, P. M., Inutsuka, S., Doi, Y., Hoang, T., Onaka, T., Iwasaki, K., Shimajiri, Y.,
 Peretto, N., André, P., Bastien, P., Berry, D., ... van Loo, S. (2021). Dust polarized emission observations of NGC 6334. Astronomy & Astrophysics, 647. https://doi.org/10.1051/0004-6361/202038624
- Burkhart, B., Collins, D. C., & Lazarian, A. (2015). Observational diagnostics of self-gravitating MHD turbulence in giant molecular clouds. The Astrophysical Journal, 808(1), 48. https://doi.org/10.1088/0004-637x/808/1/48
- Chung, E. J., Lee, C. W., Kwon, W., Yoo, H., Soam, A., & Cho, J. (2022). Evolution of the hub-filament structures in IC 5146 in the context of the energy balance of gravity, turbulence, and magnetic field. The Astronomical Journal, 164(5), 175. https://doi.org/10.3847/1538-3881/ac8a43
- Collins, D. C., Kritsuk, A. G., Padoan, P., Li, H., Xu, H., Ustyugov, S. D., & Norman, M. L. (2012). The two states of Star-forming clouds. The Astrophysical Journal, 750(1), 13. https://doi.org/10.1088/0004-637x/750/1/13
- Colombo, D., Rosolowsky, E., Ginsburg, A., Duarte-Cabral, A., & Hughes, A. (2015). Graph-based interpretation of the molecular interstellar medium segmentation. Monthly Notices of the Royal Astronomical Society, 454(2), 2067–2091. https://doi.org/10.1093/mnras/stv2063
- Didelon, P., Motte, F., Tremblin, P., Hill, T., Hony, S., Hennemann, M., Hennebelle, P., Anderson, L. D., Galliano, F., Schneider, N., Rayner, T., Rygl, K., Louvet, F., Zavagno, A., Könyves, V., Sauvage, M., André, Ph., Bontemps, S., Peretto, N., ... White, G. J. (2015). From forced collapse to H II region expansion in mon R2: Envelope density structure and age determination withherschel. Astronomy & Astrophysics, 584. https://doi.org/10.1051/0004-6361/201526239
- Hennebelle, P., & Iffrig, O. (2014). Simulations of magnetized multiphase galactic disc regulated by Supernovae Explosions. Astronomy & Astrophysics, 570. https://doi.org/10.1051/0004-6361/201423392
- Iffrig, O., & Hennebelle, P. (2017). Structure distribution and turbulence in self-consistently supernova-driven ISM of multiphase magnetized galactic discs. Astronomy & Astrophysics, 604. https://doi.org/10.1051/0004-6361/201630290
- Koch, E. W., & Rosolowsky, E. W. (2015). Filament identification through mathematical morphology. Monthly Notices of the Royal Astronomical Society, 452(4), 3435–3450. https://doi.org/10.1093/mnras/stv1521
- Kumar, M. S., Arzoumanian, D., Men'shchikov, A., Palmeirim, P., Matsumura, M., & Inutsuka, S. (2022). Filament coalescence and hub structure in mon R2. Astronomy & Astrophysics, 658. https://doi.org/10.1051/0004-6361/202140363
- Lasker, B. M., Sturch, C. R., McLean, B. J., Russell, J. L., Jenkner, H., & Shara, M. M. (1990). The Guide Star Catalog. I astronomical foundations and image processing. The Astronomical Journal, 99, 2019. https://doi.org/10.1086/115483
- Lu, Z.-J., Pelkonen, V.-M., Juvela, M., Padoan, P., Haugbølle, T., & Nordlund, Å. (2021). Physical properties and real nature of massive clumps in the galaxy. Monthly Notices of the Royal Astronomical Society, 510(2), 1697–1715. https://doi.org/10.1093/mnras/stab3517
- Padoan, P., Pan, L., Juvela, M., Haugbølle, T., & Nordlund, Åke. (2020). The origin of massive stars: The inertial-inflow model. The Astrophysical Journal, 900(1), 82. https://doi.org/10.3847/1538-4357/abaa47
- Skrutskie, M. F., Cutri, R. M., Stiening, R., Weinberg, M. D., Schneider, S., Carpenter, J. M., Beichman, C., Capps, R., Chester, T., Elias, J., Huchra, J., Liebert, J., Lonsdale, C., Monet, D. G., Price, S., Seitzer, P., Jarrett, T., Kirkpatrick, J. D., Gizis, J. E., ... Wheelock, S. (2006). The Two micron all sky survey (2MASS). The Astronomical Journal, 131(2), 1163–1183. https://doi.org/10.1086/498708
- Starforge. (2022, August 5). https://starforge.space/index.html
- Treviño-Morales, S. P., Fuente, A., Sánchez-Monge, Á., Kainulainen, J., Didelon, P., Suri, S., Schneider, N., Ballesteros-Paredes, J., Lee, Y.-N., Hennebelle, P., Pilleri, P., González-García, M., Kramer, C., García-Burillo, S., Luna, A., Goicoechea, J. R., Tremblin, P., & Geen, S. (2019). Dynamics of cluster-forming hub-filament systems. Astronomy & Astrophysics, 629. https://doi.org/10.1051/0004-6361/201935260
- Wang, J.-W., Lai, S.-P., Eswaraiah, C., Pattle, K., Francesco, J. D., Johnstone, D., Koch, P. M., Liu, T., Tamura, M., Furuya, R. S., Onaka, T., Ward-Thompson, D., Soam, A., Kim, K.-T., Lee, C. W., Lee, C.-F., Mairs, S., Arzoumanian, D., Kim, G., ... Zhu, L. (2019). JCMT bistro survey: Magnetic Fields within the hub-filament structure in IC 5146. The Astrophysical Journal, 876(1), 42. https://doi.org/10.3847/1538-4357/ab13a2
- This work reused datasets available on the:
 - https://www.erda.dk/vgrid/massive-clumps/
 - https://www.mhdturbulence.com/
 - Galactica simulations database (<u>http://www.galactica-simulations.eu</u>)