Numerical simulations of stochastic inflation using importance sampling

Joe Jackson

arXiv:2206.11234, with Hooshyar Assadullahi, Kazuya Koyama, Vincent Vennin and David Wands

Stochastic Inflation - A Quick Overview I

Ando+Vennin (2012.0203)

The dynamics of stochastic slow-roll inflation are given by

This leads to an exponential tail¹

$$P_{\phi}(\mathcal{N}) = \sum_{n} a_n(\phi) e^{-\Lambda_n \mathcal{N}}.$$

The values of the poles Λ_n depend on the potential $V(\phi)$ and reflective boundary ϕ_{UV} . Note $\zeta = \mathcal{N} - \langle \mathcal{N} \rangle$.

¹Pattison *et al.* (1707.00537), Ezquiaga *et al.* (1912.05399)

General Potentials, e.g. Starobinsky

 \implies Very difficult to solve analytically! Only a few cases are known.

Numerical Approach I

Numerical Approach II

Schematic - Direct Simulation I

Schematic - Direct Simulation II

Introducing Importance Sampling

The numerical step has a bias \mathcal{B} added²

$$\phi_{m+1} = \phi_m + \left[-\frac{1}{3H(\phi_m)} \frac{\mathrm{d}V(\phi)}{\mathrm{d}\phi} \Big|_{\phi = \phi_m} \Delta N + \frac{H(\phi_m)}{2\pi} \xi_m \sqrt{\Delta N} + \mathcal{B}(\phi_m) \Delta N \right],$$

increasing the probability of large ζ events being simulated.

²Mazonka *et al.* (nucl-th/9809075), ³Tomberg (2210.17441)

Introducing Importance Sampling

The numerical step has a bias \mathcal{B} added²

$$\phi_{m+1} = \phi_m + \left[-\frac{1}{3H(\phi_m)} \frac{\mathrm{d}V(\phi)}{\mathrm{d}\phi} \Big|_{\phi = \phi_m} \Delta N + \frac{H(\phi_m)}{2\pi} \xi_m \sqrt{\Delta N} + \mathcal{B}(\phi_m) \Delta N \right],$$

increasing the probability of large ζ events being simulated.

The unbiased target distribution (T) is recovered using the weight of the sampled (S) path $\mathbf{X} = (\phi_0, \phi_1, ..., \phi_M)$

$$w = rac{P_{\mathrm{T}}(\mathbf{X})}{P_{\mathrm{S}}(\mathbf{X})}\,.$$

 2 Mazonka *et al.* (nucl-th/9809075), 3 Tomberg (2210.17441)

Introducing Importance Sampling

The numerical step has a bias \mathcal{B} added²

$$\phi_{m+1} = \phi_m + \left[-\frac{1}{3H(\phi_m)} \frac{\mathrm{d}V(\phi)}{\mathrm{d}\phi} \Big|_{\phi = \phi_m} \Delta N + \frac{H(\phi_m)}{2\pi} \xi_m \sqrt{\Delta N} + \mathcal{B}(\phi_m) \Delta N \right],$$

increasing the probability of large ζ events being simulated.

The unbiased target distribution (T) is recovered using the weight of the sampled (S) path $\mathbf{X} = (\phi_0, \phi_1, ..., \phi_M)$

$$w = rac{P_{\mathrm{T}}(\mathbf{X})}{P_{\mathrm{S}}(\mathbf{X})}\,.$$

Often we use (there are recent improvements³)

$$\mathcal{B}(\phi_m) = \mathcal{A} rac{\mathcal{H}(\phi_m)}{2\pi}$$

²Mazonka *et al.* (nucl-th/9809075), ³Tomberg (2210.17441)

Schematic - Importance Sampling

Schematic - Importance Sampling

$$\underbrace{\text{Apply the weights, } \boldsymbol{w} = \frac{P_{\mathrm{T}}(\boldsymbol{X})}{P_{\mathrm{S}}(\boldsymbol{X})}}$$

Benchmark Tests - Quadratic Inflation

By varying m we can investigate the importance sampling method in both drift and diffusion dominated regimes.

The Exponential Tail

Reconstructing the Full PDF

Non-perturbative Deviations From Gaussianity

PyFPT

Available at https://github.com/Jacks0nJ/PyFPT

Conclusions

- Numerically expensive to simulate the very large and rare ζ perturbations needed for primordial black holes.
- PYFPT makes these simulations possible with just a laptop!
- We then investigated non-perturbative deviations from Gaussianity.

arXiv: 2206.11234

Future work

- Expand the code to the full non-slow-roll phase space.
- Calculate the noise in the full 2D phase space.

- The method of importance sampling has been shown to work beyond slow-roll (2210.17441). All that is currently required is the system to have dynamics on an attractor.
- The exact relation between stochastic and "classical" δN is still an open question.
- There is also the prospect of a stochastic end to inflation through a waterfall field³.

³Cable+Wilkins (2306.09232)

- Look at the full 2D phase space.
- Keep track of φ as the simulation runs⁴ such that the perturbations on a particular scale can be accurately simulated (stochastic inflation breaks the one-to-one relation between k and φ).
- This would allow the compaction C to be found using the coarse-shelled method⁵.
- \implies An accurate estimation for primordial black hole abundance!

⁴Briaud+Vennin (2301.09336)

⁵Tada and Vennin (2111.15280)

Appendix: Weight Calculation

A bias \mathcal{B} is added to the numerical step

$$\phi_{m+1} = \phi_m + \left[-\frac{1}{3H(\phi_m)} \frac{\mathrm{d}V(\phi)}{\mathrm{d}\phi} \Big|_{\phi = \phi_m} \Delta N + \frac{H(\phi_m)}{2\pi} \xi \sqrt{\Delta N} + \mathcal{B}(\phi_m) \Delta N \right]$$

This has a weight

$$w_m = \exp\left\{\frac{4\pi^2}{H^2(\phi_m)}\left[\phi_{m+1} - \phi_m + \frac{V'(\phi_m)}{3H(\phi_m)}\Delta N - \frac{\mathcal{B}(\phi_m)}{2}\Delta N\right]\mathcal{B}(\phi_m)\right\}.$$

The weight of the whole sampled path $X = (\phi_0, \phi_1, ..., \phi_M)$ is then

$$w(\mathbf{X}) = \prod_{m=1}^{M} w_m$$

Appendix: Bias Optimization

Appendix: Weight Visualized

Appendix: $m = 0.1 M_{\rm pl}$ Weight Contours

Appendix: $m = 0.001 M_{\rm pl}$ Weight Scatter

Appendix: $m = M_{ m pl}$ and $\phi_{ m UV}$ Weight Scatter

Appendix: $m = 0.001 M_{\rm pl}$ Lognormal Estimator

$$\langle w \rangle = \exp\left(\langle \ln w \rangle + \frac{\sigma_{\ln w}^2}{2}\right)$$