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Stochastic Inflation - A Quick Overview I

Ando+Vennin (2012.0203)
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Stochastic Inflation - A Quick Overview II

The dynamics of stochastic slow-roll inflation are given by

∂ϕ

∂N
= − 1

3H2(ϕ)

dV (ϕ)

dϕ︸ ︷︷ ︸
drift

+
H(ϕ)

2π
ξ︸ ︷︷ ︸

diffusion

.

This leads to an exponential tail1

Pϕ(N ) =
∑
n

an(ϕ)e
−ΛnN .

The values of the poles Λn depend on the potential V (ϕ) and reflective
boundary ϕUV. Note ζ = N − ⟨N⟩.

1Pattison et al. (1707.00537), Ezquiaga et al. (1912.05399)
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General Potentials, e.g. Starobinsky

φ

V (φ)

φend φUV

V = Λ4(1− e−
√

2/3φ/MPL)2

=⇒ Very difficult to solve analytically! Only a few cases are known.
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Numerical Approach I
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Numerical Approach II
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Schematic - Direct Simulation I
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Schematic - Direct Simulation II
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Introducing Importance Sampling

The numerical step has a bias B added2

ϕm+1 = ϕm+

[
− 1

3H(ϕm)

dV (ϕ)

dϕ

∣∣∣
ϕ=ϕm

∆N+
H(ϕm)

2π
ξm

√
∆N+B(ϕm)∆N

]
,

increasing the probability of large ζ events being simulated.

The unbiased target distribution (T) is recovered using the weight of the
sampled (S) path X = (ϕ0, ϕ1, ..., ϕM)

w =
PT(X)

PS(X)
.

Often we use (there are recent improvements3)

B(ϕm) = AH(ϕm)

2π

.

2Mazonka et al. (nucl-th/9809075), 3Tomberg (2210.17441)
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Schematic - Importance Sampling
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Benchmark Tests - Quadratic Inflation

φ

V (φ)

φend φin φUV

V = m2φ2/2

By varying m we can investigate the importance sampling method in both
drift and diffusion dominated regimes.
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The Exponential Tail
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Reconstructing the Full PDF
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Non-perturbative Deviations From Gaussianity
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Summary

Available at https://github.com/Jacks0nJ/PyFPT

Conclusions

Numerically expensive to simulate the very large and rare ζ
perturbations needed for primordial black holes.

PyFPT makes these simulations possible with just a laptop!

We then investigated non-perturbative deviations from Gaussianity.

arXiv: 2206.11234

Future work

Expand the code to the full non-slow-roll phase space.

Calculate the noise in the full 2D phase space.
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Appendix: Some Recent work

The method of importance sampling has been shown to work beyond
slow-roll (2210.17441). All that is currently required is the system to
have dynamics on an attractor.

The exact relation between stochastic and “classical” δN is still an
open question.

There is also the prospect of a stochastic end to inflation through a
waterfall field3.

3Cable+Wilkins (2306.09232)
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Appendix: More Future Work

Look at the full 2D phase space.

Keep track of ϕ as the simulation runs4 such that the perturbations
on a particular scale can be accurately simulated (stochastic inflation
breaks the one-to-one relation between k and ϕ).

This would allow the compaction C to be found using the
coarse-shelled method5.

=⇒ An accurate estimation for primordial black hole abundance!

4Briaud+Vennin (2301.09336)
5Tada and Vennin (2111.15280)

2 / 9



Appendix: Weight Calculation

A bias B is added to the numerical step

ϕm+1 = ϕm+

[
− 1

3H(ϕm)

dV (ϕ)

dϕ

∣∣∣
ϕ=ϕm

∆N+
H(ϕm)

2π
ξ
√
∆N+B(ϕm)∆N

]
.

This has a weight

wm = exp

{
4π2

H2(ϕm)

[
ϕm+1 − ϕm +

V ′(ϕm)

3H(ϕm)
∆N − B(ϕm)

2
∆N

]
B(ϕm)

}
.

The weight of the whole sampled path X = (ϕ0, ϕ1, ..., ϕM) is then

w(X) =
M∏

m=1

wm
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Appendix: Bias Optimization
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Appendix: Weight Visualized
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Appendix: m = 0.1Mpl Weight Contours
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Appendix: m = 0.001Mpl Weight Scatter
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Appendix: m = Mpl and ϕUV Weight Scatter
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Appendix: m = 0.001Mpl Lognormal Estimator
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