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Introduction



Inflation (basics)

Alan H. Guth, Phys. Rev. D 23, 347 (1981)

Solves many previous problems of the standard Big Bang
evolution of the universe.
(aH)−1 exponentially decreases → negative pressure fluid.

S =
∫
d4x√−g[ 1

2R
+ 1

2g
µν∂µϕ∂νϕ− V(ϕ)]

ds2 = −dt2 + a2(t)δijdxidxj

H2 = ρ ϕ̈+ 3Hϕ̇+ Vϕ = 0

H = ȧ
a

ϵ1 = − Ḣ
H2 = ϕ̇2

2H2 ≪ 1
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Inhomogeneities during inflation

There are inhomogeneities both in the scalar field and in the
metric which are important due to the exponential
expansion of the universe.
How do we study them?
Cosmological perturbation theory.

ϕ ≃ ϕ̄+ δϕ , gµν ≃ ḡµν + δgµν

ds2 = −(1 + 2A)dt2 + 2a∂iBdxidt+

a2
[
(1 + 2D)δij − 2

(
∂i∂j −

1
3δij∇

2
)
E
]
dxidxj,

We then define the comoving curvature perturbation

R = D+
1
3∇

2E− H
ϕ̇
δϕ

δGµν =
1
M2
PL
δTµν → 1

a3ϵ1

d
dt

[
a3ϵ1Ṙ

]
−∇2R = 0
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Long wavelenght limit (k→ 0)

The long wavelength limit is equivalent to neglecting spatial
gradients (terms proportionals to k in Fourier space).

1
a3ϵ1

d
dt

[
a3ϵ1Ṙk

]
−�

��H
HHk2Rk = 0 ,

Solution
Rk(k→ 0) = C1 + C2

∫ dt
a3ϵ1

,

where C1 and C2 are constants coming from initial conditions.
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Different regimes of inflation

Slow roll inflation (SR)

��AAϕ̈+3Hϕ̇+Vϕ = 0

ϕ̇ ∼ constant

ϵi ≃ constant ≪ 1

ϵi+1 =
1
Hϵi

d
dtϵi

Ultra slow-roll inflation (USR)

ϕ̈+3Hϕ̇+��@@Vϕ = 0

ϵ1 ∼ ϕ̇2 ∼ e−6Ht ≪ 1

ϵ2 ≃ −6

Rk can grow!
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Gradient expansion



Gradient expansion

D. S. Salopek and J. R. Bond, Phys. Rev. D 42 (1990), 3936

The characteristic scale of inhomogeneities is larger that the
Hubble horizon scale L≫ H−1

L ∼ O
(

1
σ

)
→ L ∼ 1

σH
with σ ≪ 1

ds2 = −α2dt̄2

a2e2DNL γ̃ij

(
dx̄i + βidt̄

)(
dx̄j + βjdt̄

)
.

ds2 = −dt2p + a(tp)2δijdxipdxjp.

H2
p = ρp

d2

dt2p
ϕp + 3Hp d

dtpϕp + Vϕp = 0
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Gradient expansion vs linear perturbation
theory

1. Perturbation theory is an expansion at leading order in the
amplitude of the fluctuation but at all orders in the
wavenumber k.

2. O(k0) gradient expansion is an expansion at leading order in
the wavenumber but at all orders in the amplitude of the
fluctuation.
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Gradient expansion

Problems



Initial conditions

1. Initial conditions are not well defined in gradient expansion.
▶ Stochastic formalism or δN formalism give perturbative initial

conditions to the gradient expansion.
2. One cannot naively neglect all the spatial derivatives.

▶ Why?
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Non-local terms

For adiabatic modes as in SR and USR

Ṙ ∝ 1
ϵ1
∇2Ψ Ψ Bardeen potential

∇2Ψ does not vanish in the k→ 0 limit!

∇2Ψ ∼ O(k0) → Ψ ∼ O(k−2)

Terms like ∇2Ψ always decay, but this does not mean that
they are k-suppressed.
They play a crucial role for the correct description of the
evolution of R at super-horizon scales.
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Applications of gradient expan-
sion



Applications of gradient expan-
sion

δN formalism



δN formalism
D. S. Salopek and J. R. Bond, Phys. Rev. D 42 (1990), 3936

At leading order in gradient expansion and neglecting decaying
terms, the number of e-folds is:

N ≃
∫ t̄e

t̄0

(
H̄+ ḊNL

)
dt̄ ,

If we integrate from a flat hypersurface at time t̄0 to some other
hypersurface specified by A we get

NA
f ≃

∫ t̄e

t̄0
H̄dt̄+ DNLA = N̄+ DNLA (̄te) ,

We define the δN formalism as

δN ≡ NA
f − N̄ = DNLA (̄te) .

Different final hypersurfaces →
different curvatures!

10 20



δN formalism in terms of initial conditions.

Non-linear but still perturbative!
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Problems with δN formalism.

δN formalism only gives initial conditions for one mode!
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Problems with δN formalism.

δN formalism only gives initial conditions for one mode!
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Problems with δN formalism.

δN formalism only gives initial conditions for one mode!
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Applications of gradient expan-
sion

Stochastic approach to inflation



Stochastic approach to inflation

A. A. Starobinsky, Lect. Notes Phys. 246 (1986).

Evolution of the full quantum field

IR part (k < σaH)

Gradient expansion

Equation of motion

UV part (k > σaH)

Linear perturbation theory

Noises
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Example: Hamiltonian constraint

ADM formalism

R(3) − KijKij + K2 =
2
M2
PL
Tµνnµnν

(
H
αIR

)2
− 1

3

(
1
2

(
ϕ̇IR

αIR

)2

+ V
(
ϕIR
))

=
ϕ̇IR

3 (αIR)2 ξ1

ξ1 = −σaH (1 − ϵ1)

∫ dk
(2π)3/2 δ (k− σaH)φk

A very important aspect:
φk must be computed over an stochastic background.
1

3 (αIR)3

{
6H2Ak + αIRϕ̇IRφ̇k −

(
ϕ̇IR
)2

Ak − Vϕ
(
ϕIR
)
φk +

k4

3a2 Ek
}

= 0
...
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Stochastic approach to inflation

Following the same procedure with every ADM equation and
being careful about the k→ 0 limit:
DC, C. Germani, Phys.Rev.D 105 (2022) 2, 023533
DC, Universe 8 (2022) 6, 334

πIR =
∂ϕIR

∂N + ξ1 ,

∂πIR

∂N +

(
3 −

(
πIR
)2

2M2
PL

)
πIR +

(
3M2

PL −
(
πIR
)2

2

)
Vϕ
(
ϕIR
)

V (ϕIR) = −ξ2 ,

∂i

(
∂

∂N

(
1
3∇

2EIR
))

− ∂iα
IR

αIR
+

∂ϕIR

∂N
∂iϕ

2M2
PL

= −∂iξ4 ,
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Stochastic approach to inflation

Typically in the literature people study the stochastic formalism at
leading order in ϵ1 (without considering ∇2 terms):

πIR =
∂ϕIR

∂N + ξ1 ,

∂πIR

∂N +

(
3 −

�
�
��@

@
@@

(
πIR
)2

2M2
PL

)
πIR +

3M2
PL −

�
�
��@

@
@@

(
πIR
)2

2

 Vϕ
(
ϕIR
)

V (ϕIR) = −ξ2 ,

((((((((((((((((((((((hhhhhhhhhhhhhhhhhhhhhh

∂i

(
∂

∂N

(
1
3∇

2EIR
))

− ∂iα
IR

αIR
+

∂ϕIR

∂N
∂iϕ

2M2
PL

= −∂iξ4 ,

Noises still in a stochastic background!
▶ Very difficult to solve the system both analytically and

numerically.
▶ An alternative is to compute the noises in a deterministic

background → small noise approximation → linear
perturbation theory.

▶ At least we can use it as a consistency check of our formalism.
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SR-USR-SR Transition V(ϕ) = V0
(
1 + β (ϕ− ϕ0)

3)
Why? Inflection point → PBHs.
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Conclusions



Conclusions

Gradient expansion is a very powerful tool to study
inflationary inhomogeneities in a non-perturbative way.
However, it present 2 main problems:

1. Initial conditions not well defined
Solved perturbatively with the δN formalism.
Solved non-perturbatively in the stochastic formalism → very
difficult.

2. One must be very careful when dropping spatial derivatives
in this approximation.
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Thank you!
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