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1. INTRODUCTION

• A gravitational wave (GW) is a disturbance in the fabric of spacetime, caused by 
the acceleration or movement of massive objects.

• Gravitational wave search promises to be an important part of the future of 
Physics, which makes necessary a way of analyzing the data in a fast and 
trustworthy way.

• We focus on GWs produced by Binary Black Holes.
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1. INTRODUCTION

• One of the predictions of GR is that GW can suffer from lensing. Just as waves of 
light are lensed when interacting with a convex-shaped material, gravitational 
waves can experience a similar phenomenon.

• The search for lensing signatures within gravitational-wave signals is a 
challenging task that holds the potential to uncover fresh insights into fundamental 
physics, astrophysics, and cosmology.
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1. INTRODUCTION
Machine Learning

• Tom Mitchell defines Machine Learning as the study of algorithms that improve their 
performance P at some task T based on experience E.

• In the context of gravitational waves, we can define these kind of problems in several 
ways.

• These last years, there has been active research on this way of studying the topic.
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• GW interferometers measure the differential change of length of the arms of the 
detector, giving us a temporal series of the strain of the signal, h(t). 

2. APPROACH
The Data
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• The signal is always hidden in noise, and it is not visible to the plain eye. 
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• There are different transforms that can help us visualizing the data. For example, by means 
of the so-called Q-transform [7]. This transform has proven to be a good way of studying GWs 
[8].
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• Now, how would the data look for a lensed GW?

16

2. APPROACH
The Data



• Now, how would the data look for a lensed GW?

• It depends on the mass of the lense. We differentiate between strong lensing and 
microlensing. We are currently studying the latter.
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• Now, how would the data look for a lensed GW?

• It depends on the mass of the lense. We differentiate between strong lensing and 
microlensing. We are currently studying the latter.
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• Problem: Small amount of data. The catalog released in October 2020 had 90 registered 
events. Currently, the detectors are collecting data, so this number is growing. Nevertheless, 
we do not have enough real data to train our models.
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• Problem: Small amount of data. The catalog released in October 2020 had 90 registered 
events. Currently, the detectors are collecting data, so this number is growing. Nevertheless, 
we do not have enough real data to train our models.

• Solution: Simulated data. There are different Python libraries that give us tools to do so.
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• Problem: Small amount of data. The catalog released in October 2020 had 90 registered 
events. Currently, the detectors are collecting data, so this number is growing. Nevertheless, 
we do not have enough real data to train our models.

• Solution: Simulated data. There are different Python libraries that give us tools to do so.

• We use this data for training ML models.
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• We simulate different classes of data using the Python library PyCBC [10].

• For generating the waveforms, we use the approximant IMRPhenomenonPv2. 

• For generating noise, we use the Power Spectral Density (PSD) of three detectors: the 

two LIGO detectors, in Hanford (H1) and Livingston (L1), and the Virgo detector, in Pisa 

(V1).

• We simulate the following data:

Type
Volume 

(approximate)
Datasets

Parameter Ranges 
and Distribution

Noise 20000
Training set: 20000
Validation set: 1000

Test set: 1000
PSD from H1, L1 and V1

Unlensed Signals 10000

Training set: 9000
Validation set: 500

Test set: 500

Masses: 10-80 solar masses, log-
uniform

Distances: 500, 750, 1000, 1250, 
1500, 1750, 2000, 2500, 3000, 

3500 (Mpc)
Signal to Noise Ratio (SNR): 5-50

Lensed Signals 10000
Training set: 9000
Validation set: 500

Test set: 500

Same masses and distances.
y: 0-1, uniform

∆t: 0,.225ms-0.5s, uniform

[10] Nitz, A. et al. (2023). (https://doi.org/10.5281/zenodo.7885796)
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• We train two models based on VGG19 [11] using two techniques:

• Transfer Learning: VGG19 has been trained with a huge dataset. We take advantage of its 
knowledge for finding patterns.

• Fine Tuning: Most of the network is unmodified while training. We just train the linear layers 
(after adding a fourth one) so that VGG19 specializes in GW search.

• These two models are:

• S-N (Signal-Noise): Trained with around 18,000 noise spectrograms and 18,000 signal 
spectrograms (both lensed and unlensed signals). It classifies the image in “Noise” or “BBH”. 
1,000 images per class for validation and testing.

• L-U (Lensed-Unlensed): Trained with around 9,000 lensed signal spectrograms and 9,000 
noise spectrograms. 500 images per class for validation and testing.

25[11] Simonyan, K. et al. (2015).
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3. RESULTS
N-S Model

• In the testing phase, the N-S model classified every image with an 
accuracy of 100%. Observations:

• The model had not seen these images before.

• Some of the signal images had a SNR of less than 6. To this day, the detected event 
with lower SNR has an SNR of 6.
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• In the testing phase, the N-S model classified every image with an 
accuracy of 98%. 
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• The training process took between 3 and 4 hours for both models.

• The test set classification was carried out in around 20 minutes. The test 
set for the N-S model has a total of 5696 seconds of data, while the test 
set for the L-U model consists of 2378 seconds of data. This is a clear 
advantage in front of traditional methods such as Matched Filtering [12].

• The evolution of the loss and the accuracy of the models during training 
show a smooth behavior.
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4. CONCLUSIONS

• ML methods can carry classification tasks in the context of GW search in a 
fast and accurate way.

• In the case of time-frequency spectrograms, we find that CNNs such as 
VGG19 perform specially well when differentiating between noise and 
simulated BBH signals with injected noise.

• Also in this context, VGG19 has proved to distinguish quite well (98% 
accuracy) between simulated lensed and unlensed signals.

• One of the main strengths about this type of models is how fast they prove 
to be in detection tasks. This characteristic makes them perfect for being 
combined with traditional GW search methods such as MF, which can be 
excruciatingly time-consuming.
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5. FUTURE AND POSSIBILITIES

• Different models: U-Net (medical image), ResNet, more simple models...

• Different types of data: Time series, other type of frequency transforms...

• Different tasks: Noise reduction, dimensionality reduction, glitch 
detection, strong lensing...
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